由=λ得A(.) ---------9分將A點(diǎn)坐標(biāo)代入橢圓方程得(c2+λa2)2+λ2a4=(1+λ)2a2c2∴(e2+λ)2+λ2=e2(1+λ)2 --------10分 查看更多

 

題目列表(包括答案和解析)

記I為虛數(shù)集,設(shè)a,b∈R,x,y∈I.則下列類比所得的結(jié)論正確的是( 。

查看答案和解析>>

閱讀下面材料:根據(jù)兩角和與差的正弦公式,有
sin(α+β)=sinαcosβ+cosαsinβ------①
sin(α-β)=sinαcosβ-cosαsinβ------②
由①+②得sin(α+β)+sin(α-β)=2sinαcosβ------③
令α+β=A,α-β=β 有α=
A+B
2
,β=
A-B
2

代入③得 sinA+subB=2sin
A+B
2
cos
A-B
2

(Ⅰ) 類比上述推理方法,根據(jù)兩角和與差的余弦公式,證明:cosA-cosB=-2sin
A+B
2
sin
A-B
2
;
(Ⅱ)求值:sin220°+cos250°+sin20°cos50°(提示:如果需要,也可以直接利用閱讀材料及(Ⅰ)中的結(jié)論)

查看答案和解析>>

下面結(jié)論錯(cuò)誤 的序號是
①②③
①②③

①比較2n與2(n+1),n∈N*的大小時(shí),根據(jù)n=1,2,3時(shí),2<4,4<6,8=8,可得2n≤2(n+1)對一切n∈N*成立;
②由“(a•b)c=a(b•c)”(a,b,c∈R)類比可得“(
a
b
)•
c
=
a
•(
b
c
)
”;
③復(fù)數(shù)z滿足z•
.
z
=1
,則|z-2+i|的最小值為
5

查看答案和解析>>

11、由圖可推得a,b,c的大小關(guān)系是( 。

查看答案和解析>>

(2012•福建模擬)閱讀下面材料:
根據(jù)兩角和與差的正弦公式,有sin(α+β)=sinαcosβ+cosαsinβ------①
sin(α-β)=sinαcosβ-cosαsinβ------②
由①+②得sin(α+β)+sin(α-β)=2sinαcosβ------③
令α+β=A,α-β=B有α=
A+B
2
,β=
A-B
2

代入③得 sinA+sinB=2sin
A+B
2
cos
A-B
2

(Ⅰ)類比上述推證方法,根據(jù)兩角和與差的余弦公式,證明:cosA-cosB=-2sin
A+B
2
sin
A-B
2
;
(Ⅱ)若△ABC的三個(gè)內(nèi)角A,B,C滿足cos2A-cos2B=2sin2C,試判斷△ABC的形狀.
(提示:如果需要,也可以直接利用閱讀材料及(Ⅰ)中的結(jié)論)

查看答案和解析>>


同步練習(xí)冊答案