(Ⅰ)由題意知 查看更多

 

題目列表(包括答案和解析)

(1)已知α,β∈(0,
π
2
)
,且tanα•tanβ<1,比較α+β與
π
2
的大小;
(2)試確定一個區(qū)間D,D⊆(-
π
2
π
2
)
,對任意的α、β∈D,當α+β<
π
2
時,恒有sinα<cosβ;并說明理由.
說明:對于第(2)題,將根據(jù)寫出區(qū)間D所體現(xiàn)的思維層次和對問題探究的完整性,給予不同的評分.

查看答案和解析>>

(1)利用函數(shù)單調性的定義證明函數(shù)h(x)=x+
3
x
在[
3
,∞)
上是增函數(shù);
(2)我們可將問題(1)的情況推廣到以下一般性的正確結論:已知函數(shù)y=x+
t
x
有如下性質:如果常數(shù)t>0,那么該函數(shù)在(0,
t
]
上是減函數(shù),在[
t
,+∞)
上是增函數(shù).
若已知函數(shù)f(x)=
4x2-12x-3
2x+1
,x∈[0,1],利用上述性質求出函數(shù)f(x)的單調區(qū)間;又已知函數(shù)g(x)=-x-2a,問是否存在這樣的實數(shù)a,使得對于任意的x1∈[0,1],總存在x2∈[0,1],使得g(x2)=f(x1)成立,若不存在,請說明理由;如存在,請求出這樣的實數(shù)a的值.

查看答案和解析>>

(2010•青浦區(qū)二模)[理科]定義:如果數(shù)列{an}的任意連續(xù)三項均能構成一個三角形的三邊長,則稱{an}為“三角形”數(shù)列.對于“三角形”數(shù)列{an},如果函數(shù)y=f(x)使得bn=f(an)仍為一個“三角形”數(shù)列,則稱y=f(x)是數(shù)列{an}的“保三角形函數(shù)”,(n∈N*).
(1)已知{an}是首項為2,公差為1的等差數(shù)列,若f(x)=kx,(k>1)是數(shù)列{an}的“保三角形函數(shù)”,求k的取值范圍;
(2)已知數(shù)列{cn}的首項為2010,Sn是數(shù)列{cn}的前n項和,且滿足4Sn+1-3Sn=8040,證明{cn}是“三角形”數(shù)列;
(3)根據(jù)“保三角形函數(shù)”的定義,對函數(shù)h(x)=-x2+2x,x∈[1,A],和數(shù)列1,1+d,1+2d(d>0)提出一個正確的命題,并說明理由.

查看答案和解析>>

(2011•鹽城二模)已知數(shù)列{an}單調遞增,且各項非負,對于正整數(shù)K,若任意的i,j(1≤i≤j≤K),aj-ai仍是{an}中的項,則稱數(shù)列{an}為“K項可減數(shù)列”.
(1)已知數(shù)列{an}是首項為2,公比為2的等比數(shù)列,且數(shù)列{an-2}是“K項可減數(shù)列”,試確定K的最大值;
(2)求證:若數(shù)列{an}是“K項可減數(shù)列”,則其前n項的和Sn=
n2
an(n=1,2,…,K)
;
(3)已知{an}是各項非負的遞增數(shù)列,寫出(2)的逆命題,判斷該逆命題的真假,并說明理由.

查看答案和解析>>

(2012•閔行區(qū)一模)設數(shù)列{an}的各項均為正數(shù),前n項和為Sn,已知4Sn=
a
2
n
+2an+1(n∈N*)

(1)證明數(shù)列{an}是等差數(shù)列,并求其通項公式;
(2)證明:對任意m、k、p∈N*,m+p=2k,都有
1
Sm
+
1
Sp
2
Sk
;
(3)對于(2)中的命題,對一般的各項均為正數(shù)的等差數(shù)列還成立嗎?如果成立,請證明你的結論,如果不成立,請說明理由.

查看答案和解析>>


同步練習冊答案