即時.f(x)單調遞增. 查看更多

 

題目列表(包括答案和解析)

已知函數f(x)=(x3+ax2+bx+3)•ecx,其中a、b、c∈R.
(1)當c=1時,若x=0和x=1都是f(x)的極值點,試求f(x)的單調遞增區(qū)間;
(2)當c=1時,若3a+2b+7=0,且x=1不是f(x)的極值點,求出a和b的值;
(3)當c=0且a2+b=10時,設函數h(x)=f(x)-3在點M(1,h(1))處的切線為l,若l在點M處穿過函數h(x)的圖象(即動點在點M附近沿曲線y=h(x)運動,經過點M時,從l的一側進入另一側),求函數y=h(x)的表達式.

查看答案和解析>>

已知函數f(x)=ex-ax,其中a>0.

(1)若對一切x∈R,f(x) 1恒成立,求a的取值集合;

(2)在函數f(x)的圖像上去定點A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使恒成立.

【解析】解:.

單調遞減;當單調遞增,故當時,取最小值

于是對一切恒成立,當且僅當.       、

時,單調遞增;當時,單調遞減.

故當時,取最大值.因此,當且僅當時,①式成立.

綜上所述,的取值集合為.

(Ⅱ)由題意知,

,則.當時,單調遞減;當時,單調遞增.故當

從而,

所以因為函數在區(qū)間上的圖像是連續(xù)不斷的一條曲線,所以存在使成立.

【點評】本題考查利用導函數研究函數單調性、最值、不等式恒成立問題等,考查運算能力,考查分類討論思想、函數與方程思想等數學方法.第一問利用導函數法求出取最小值對一切x∈R,f(x) 1恒成立轉化為從而得出求a的取值集合;第二問在假設存在的情況下進行推理,然后把問題歸結為一個方程是否存在解的問題,通過構造函數,研究這個函數的性質進行分析判斷.

 

查看答案和解析>>

已知函數處取得極值2.

⑴ 求函數的解析式;

⑵ 若函數在區(qū)間上是單調函數,求實數m的取值范圍;

【解析】第一問中利用導數

又f(x)在x=1處取得極值2,所以,

所以

第二問中,

因為,又f(x)的定義域是R,所以由,得-1<x<1,所以f(x)在[-1,1]上單調遞增,在上單調遞減,當f(x)在區(qū)間(m,2m+1)上單調遞增,則有,得

解:⑴ 求導,又f(x)在x=1處取得極值2,所以,即,所以…………6分

⑵ 因為,又f(x)的定義域是R,所以由,得-1<x<1,所以f(x)在[-1,1]上單調遞增,在上單調遞減,當f(x)在區(qū)間(m,2m+1)上單調遞增,則有,得,                …………9分

當f(x)在區(qū)間(m,2m+1)上單調遞減,則有 

                                                …………12分

.綜上所述,當時,f(x)在(m,2m+1)上單調遞增,當時,f(x)在(m,2m+1)上單調遞減;則實數m的取值范圍是

 

查看答案和解析>>

如圖展示了一個由區(qū)間(0,1)到實數集R的對應過程:區(qū)間(0,1)中的實數m對應數軸上(線段AB)的點M(如圖1);將線段AB圍成一個圓,使兩端點A、B恰好重合(如圖2);再將這個圓放在平面直角坐標系中,使其圓心在y軸上;點A的坐標為(0,1)(如圖3),當點M從A到B是逆時針運動時,圖3中直線AM與x軸交于點N(n,0),按此對應法則確定的函數使得m與n對應,即
f(m)=n.

對于這個函數y=f(x),有下列命題:
;  ②f(x)的圖象關于對稱;  ③若,則;  ④f(x)在(0,1)上單調遞增.
其中正確的命題個數是( )
A.1
B.2
C.3
D.4

查看答案和解析>>

如圖展示了一個由區(qū)間(0,1)到實數集R的對應過程:區(qū)間(0,1)中的實數m對應數軸上(線段AB)的點M(如圖1);將線段AB圍成一個圓,使兩端點A、B恰好重合(如圖2);再將這個圓放在平面直角坐標系中,使其圓心在y軸上;點A的坐標為(0,1)(如圖3),當點M從A到B是逆時針運動時,圖3中直線AM與x軸交于點N(n,0),按此對應法則確定的函數使得m與n對應,即
f(m)=n.

對于這個函數y=f(x),有下列命題:
;  ②f(x)的圖象關于對稱;  ③若,則;  ④f(x)在(0,1)上單調遞增.
其中正確的命題個數是( )
A.1
B.2
C.3
D.4

查看答案和解析>>


同步練習冊答案