(2)若a=,b+c=3,求b和c的值.(1)在△ABC中有B+C=π-A.由條件可得 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)=2cos2
ωx
2
+cos(ωx+
π
3
)
(ω>0)的最小正周期為π.
(1)求實(shí)數(shù)ω的值,并求使得關(guān)于x的方程f(x)=m在區(qū)間[0,
3
]
上有解的實(shí)數(shù)m的取值范圍;
(2)在銳角△ABC中,a,b,c分別是角A,B,C的對(duì)邊,若f(A)=-
1
2
,c=3
,△ABC的面積為3
3
,求角A的值和邊a的值.

查看答案和解析>>

設(shè)函數(shù)f(x)=
1
a
x,0≤x≤a
 
1
1-a
(1-x),
a<x≤1
常數(shù)且a∈(0,1).
(1)當(dāng)a=
1
2
時(shí),求f(f(
1
3
));
(2)若x0滿足f(f(x0))=x0,但f(x0)≠x0,則稱x0為f(x)的二階周期點(diǎn),試確定函數(shù)有且僅有兩個(gè)二階周期點(diǎn),并求二階周期點(diǎn)x1,x2;
(3)對(duì)于(2)中x1,x2,設(shè)A(x1,f(f(x1))),B(x2,f(f(x2))),C(a2,0),記△ABC的面積為s(a),求s(a)在區(qū)間[
1
3
1
2
]上的最大值和最小值.

查看答案和解析>>

(2013•江西)設(shè)函數(shù)f(x)=
1
a
x,0≤x≤a
 
1
1-a
(1-x),
a<x≤1
常數(shù)且a∈(0,1).
(1)當(dāng)a=
1
2
時(shí),求f(f(
1
3
));
(2)若x0滿足f(f(x0))=x0,但f(x0)≠x0,則稱x0為f(x)的二階周期點(diǎn),試確定函數(shù)有且僅有兩個(gè)二階周期點(diǎn),并求二階周期點(diǎn)x1,x2;
(3)對(duì)于(2)中x1,x2,設(shè)A(x1,f(f(x1))),B(x2,f(f(x2))),C(a2,0),記△ABC的面積為s(a),求s(a)在區(qū)間[
1
3
1
2
]上的最大值和最小值.

查看答案和解析>>

設(shè)函數(shù)f(x)=a為常數(shù)且a∈(0,1).
(1)當(dāng)a=時(shí),求f;
(2)若x0滿足f[f(x0)]=x0,但f(x0)≠x0,則稱x0為f(x)的二階周期點(diǎn).證明函數(shù)f(x)有且僅有兩個(gè)二階周期點(diǎn),并求二階周期點(diǎn)x1,x2
(3)對(duì)于(2)中的x1,x2,設(shè)A(x1,f[f(x1)]),B(x2,f[f(x2)]),C(a2,0),記△ABC的面積為S(a),求S(a)在區(qū)間[]上的最大值和最小值.

查看答案和解析>>

設(shè)函數(shù)f(x)=a為常數(shù)且a∈(0,1).
(1)當(dāng)a=時(shí),求f;
(2)若x0滿足f[f(x0)]=x0,但f(x0)≠x0,則稱x0為f(x)的二階周期點(diǎn).證明函數(shù)f(x)有且僅有兩個(gè)二階周期點(diǎn),并求二階周期點(diǎn)x1,x2;
(3)對(duì)于(2)中的x1,x2,設(shè)A(x1,f[f(x1)]),B(x2,f[f(x2)]),C(a2,0),記△ABC的面積為S(a),求S(a)在區(qū)間[]上的最大值和最小值.

查看答案和解析>>


同步練習(xí)冊(cè)答案