2)若∠A為鈍角.則解得.∴c的取值范圍是, 查看更多

 

題目列表(包括答案和解析)

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
短軸長為2,P(x0,y0)(x0≠±a)是橢圓上一點(diǎn),A,B分別是橢圓的左、右頂點(diǎn),直線PA,PB的斜率之積為-
1
4

(1)求橢圓的方程;
(2)當(dāng)∠F1PF2為鈍角時(shí),求P點(diǎn)橫坐標(biāo)的取值范圍;
(3)設(shè)F1,F(xiàn)2分別是橢圓的左右焦點(diǎn),M、N是橢圓右準(zhǔn)線l上的兩個(gè)點(diǎn),若
F1M
F2N
=0
,求MN的最小值.

查看答案和解析>>

精英家教網(wǎng)如圖所示,在橢圓
x2
a2
+
y2
b2
=1 (a>b>0)
中,A為橢圓左頂點(diǎn),B為橢圓上頂點(diǎn),F(xiàn)為橢圓右焦點(diǎn).
(I)若△ABF為等腰三角形,且BF=2,求橢圓方程;
(II)若△ABF為鈍角三角形,求橢圓離心率的取值范圍.

查看答案和解析>>

(2013•荊門模擬)如圖,已知直線OP1,OP2為雙曲線E:
x2
a2
-
y2
b2
=1
的漸近線,△P1OP2的面積為
27
4
,在雙曲線E上存在點(diǎn)P為線段P1P2的一個(gè)三等分點(diǎn),且雙曲線E的離心率為
13
2

(1)若P1、P2點(diǎn)的橫坐標(biāo)分別為x1、x2,則x1、x2之間滿足怎樣的關(guān)系?并證明你的結(jié)論;
(2)求雙曲線E的方程;
(3)設(shè)雙曲線E上的動(dòng)點(diǎn)M,兩焦點(diǎn)F1、F2,若∠F1MF2為鈍角,求M點(diǎn)橫坐標(biāo)x0的取值范圍.

查看答案和解析>>

(2012•湘潭模擬)設(shè)A為橢圓
x2
a2
+
y2
b2
=1
(a>b>0)上一點(diǎn),點(diǎn)A關(guān)于原點(diǎn)的對稱點(diǎn)為B,F(xiàn)為橢圓的右焦點(diǎn),且AF⊥BF,設(shè)∠ABF=θ.
(1)|AB|=
2
a2-b2
2
a2-b2

(2)若θ∈[
π
12
π
4
],則該橢圓離心率的取值范圍為
[
2
2
,
6
3
]
[
2
2
,
6
3
]

查看答案和解析>>

已知橢圓短軸長為2,P(x,y)(x≠±a)是橢圓上一點(diǎn),A,B分別是橢圓的左、右頂點(diǎn),直線PA,PB的斜率之積為
(1)求橢圓的方程;
(2)當(dāng)∠F1PF2為鈍角時(shí),求P點(diǎn)橫坐標(biāo)的取值范圍;
(3)設(shè)F1,F(xiàn)2分別是橢圓的左右焦點(diǎn),M、N是橢圓右準(zhǔn)線l上的兩個(gè)點(diǎn),若,求MN的最小值.

查看答案和解析>>


同步練習(xí)冊答案