10.將4個(gè)不相同的球放入編號(hào)為1.2.3的3個(gè)盒子中.當(dāng)某盒子中球的個(gè)數(shù)等于該盒子的編號(hào)時(shí)稱為一個(gè)匹配.則恰好有2個(gè)匹配的概率為 查看更多

 

題目列表(包括答案和解析)

有3個(gè)不相同的球和4個(gè)盒子,盒子的編號(hào)分別為1、2、3、4,將球逐個(gè)獨(dú)立地、隨機(jī)地放入4個(gè)盒子中去.以η表示其中至少有球的盒子的最小號(hào)碼.(例如,事件η=3表示第1號(hào),第2號(hào)盒子都是空的,第3號(hào)盒子中至少有一個(gè)球).
(1)當(dāng)η=2時(shí),求P(η=2);
(2)求η的分布列及期望Eη.

查看答案和解析>>

將4個(gè)不相同的小球放入編號(hào)為1、2、3的3個(gè)盒子中,當(dāng)某個(gè)盒子中球的個(gè)數(shù)等于該盒子編號(hào)時(shí)稱為一個(gè)和諧盒,則恰有兩個(gè)和諧盒的概率為


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式

查看答案和解析>>

將4個(gè)顏色互不相同的球全部放入編號(hào)為1、2的兩個(gè)盒子里,使得放入每個(gè)盒子里的球的個(gè)數(shù)不小于該盒子的編號(hào),則不同的放球方法有        (    )

A.10種                B.20種               C.36種               D.52種

查看答案和解析>>

將4個(gè)顏色互不相同的球全部放入編號(hào)為1、2的兩個(gè)盒子里,使得放入每個(gè)盒子里的球的個(gè)數(shù)不小于該盒子的編號(hào),則不同的放球方法有       (   )
A.10種B.20種C.36種D.52種

查看答案和解析>>

5、將4個(gè)顏色互不相同的球全部放入編號(hào)為1和2的兩個(gè)盒子里,使得放入每個(gè)盒子里的球的個(gè)數(shù)不小于該盒子的編號(hào),則不同的放球方法有( 。

查看答案和解析>>

 

一、選擇題

1―5 CADBA    6―10 CBABD    11―12 CC

二、填空題

13.(理)(文)(―1,1)    14.    15.(理)18(文)(1,0)

16.①③

三、解答題

17.解:(1)由題意得   ………………2分

   

   (2)由可知A、B都是銳角,   …………7分

   

    這時(shí)三角形為有一頂角為120°的等腰三角形   …………12分

18.(理)解:(1)ξ的所有可能的取值為0,1,2,3。  ………………2分

   

   (2)   ………………12分

   (文)解:(1);  ………………6分

   (2)因?yàn)?sub>

      …………10分

    所以   …………12分

19.解:(1),   ………………1分

    依題意知,   ………………3分

   (2)令   …………4分

     …………5分

    所以,…………7分

   (3)由上可知

    ①當(dāng)恒成立,

    必須且只須, …………8分

    ,

     則   ………………9分

    ②當(dāng)……10分

    要使當(dāng)

    綜上所述,t的取值范圍是   ………………12分

20.解法一:(1)取BB1的中點(diǎn)D,連CD、AD,則∠ACD為所求。…………1分

   

   (2)方法一 作CE⊥AB于E,C1E1⊥A1B1于E1,連EE1

則AB⊥面CC1E1E,因此平面PAB⊥面CC1E1E。

因?yàn)锳1B1//AB,所以A1B1//平面PAB。則只需求點(diǎn)E1到平面PAB的距離。

作E1H⊥EP于H,則E1H⊥平面PAB,則E1H即為所求距離。  …………6分

求得 …………8分

方法二:設(shè)B1到平面PAB的距離為h,則由

  ………………8分

   (3)設(shè)平面PAB與平面PA1B1的交線為l,由(2)知,A1B1//平面PAB,

則A1B1//l,因?yàn)锳B⊥面CC1E1E,則l⊥面CC1E1E,

所以∠EPE1就是二面有AB―P―A1B的平面角。 ………………9分

要使平面PAB⊥平面PA1B1,只需∠EPE1=90°。  ………………10分

在矩形CEE1C1中,

解得

  • <address id="9opap"></address>

      解法二:(1)取B1C1的中點(diǎn)O,則A1O⊥B1C1,

      以O(shè)為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系如圖,

         (2)是平面PAB的一個(gè)法向量,

         ………………5分

         ………………6分

        ………………8分

         (3)設(shè)P點(diǎn)坐標(biāo)為(),則

      設(shè)是平面PAB的一個(gè)法向量,與(2)同理有

          令

          同理可求得平面PA1B1的一個(gè)法向量   ………………10分

          要使平面PAB⊥平面PA1B1,只需

            ………………11分

          解得: …………12分

      21.(理)解:(1)由條件得

         

         (2)①設(shè)直線m ……5分

         

          ②不妨設(shè)M,N的坐標(biāo)分別為

      …………………8分

      因直線m的斜率不為零,故

         (文)解:(1)設(shè)  …………2分

         

          故所求雙曲線方程為:

         (2)設(shè),

         

          由焦點(diǎn)半徑,  ………………8分

         

      22.(1)證明:

          所以在[0,1]上為增函數(shù),   ………………3分

         (2)解:由

         

         (3)解:由(1)與(2)得 …………9分

          設(shè)存在正整數(shù)k,使得對(duì)于任意的正整數(shù)n,都有成立,

             ………………10分

         

          ,   ………………11分

          當(dāng),   ………………12分

          當(dāng)    ………………13分

          所在存在正整數(shù)

          都有成立.   ………………14分

       

       

       

       


      同步練習(xí)冊(cè)答案