②當直線m的斜率不為0時.問在直線 查看更多

 

題目列表(包括答案和解析)

平面直角坐標系xoy中,直線x-y+1=0截以原點O為圓心的圓所得的弦長為
6

(1)求圓O的方程;
(2)若直線l與圓O切于第一象限,且與坐標軸交于D,E,當DE長最小時,求直線l的方程;
(3)問是否存在斜率為2的直線m,使m被圓O截得的弦為AB,以AB為直徑的圓經過原點.若存在,寫出直線m的方程;若不存在,說明理由.

查看答案和解析>>

平面直角坐標系xoy中,直線x-y+1=0截以原點O為圓心的圓所得的弦長為
6

(1)求圓O的方程;
(2)若直線l與圓O切于第一象限,且與坐標軸交于D,E,當DE長最小時,求直線l的方程;
(3)問是否存在斜率為2的直線m,使m被圓O截得的弦為AB,以AB為直徑的圓經過原點.若存在,寫出直線m的方程;若不存在,說明理由.

查看答案和解析>>

已知動圓過定點P(1,0),且與定直線l:x=-1相切,點C在l上.
(Ⅰ)求動圓圓心的軌跡M的方程;
(Ⅱ)設過點P,且斜率為-的直線與曲線M相交于A,B兩點.
(i)問:△ABC能否為正三角形?若能,求點C的坐標;若不能,說明理由;
(ii)當△ABC為鈍角三角形時,求這種點C的縱坐標的取值范圍.

查看答案和解析>>

已知動圓過定點P(1,0),且與定直線l:x=-1相切,點C在l上.
(Ⅰ)求動圓圓心的軌跡M的方程;
(Ⅱ)設過點P,且斜率為-的直線與曲線M相交于A,B兩點.
(i)問:△ABC能否為正三角形?若能,求點C的坐標;若不能,說明理由;
(ii)當△ABC為鈍角三角形時,求這種點C的縱坐標的取值范圍.

查看答案和解析>>

已知動圓過定點P(1,0),且與定直線l:x=-1相切,點C在l上.
(Ⅰ)求動圓圓心的軌跡M的方程;
(Ⅱ)設過點P,且斜率為-的直線與曲線M相交于A,B兩點.
(i)問:△ABC能否為正三角形?若能,求點C的坐標;若不能,說明理由;
(ii)當△ABC為鈍角三角形時,求這種點C的縱坐標的取值范圍.

查看答案和解析>>

 

一、選擇題

1―5 CADBA    6―10 CBABD    11―12 CC

二、填空題

13.(理)(文)(―1,1)    14.    15.(理)18(文)(1,0)

16.①③

三、解答題

17.解:(1)由題意得   ………………2分

   

   (2)由可知A、B都是銳角,   …………7分

   

    這時三角形為有一頂角為120°的等腰三角形   …………12分

18.(理)解:(1)ξ的所有可能的取值為0,1,2,3。  ………………2分

   

   (2)   ………………12分

   (文)解:(1);  ………………6分

   (2)因為

      …………10分

    所以   …………12分

19.解:(1),   ………………1分

    依題意知,   ………………3分

   (2)令   …………4分

     …………5分

    所以,…………7分

   (3)由上可知

    ①當恒成立,

    必須且只須, …………8分

    ,

     則   ………………9分

    ②當……10分

    要使當

    綜上所述,t的取值范圍是   ………………12分

20.解法一:(1)取BB1的中點D,連CD、AD,則∠ACD為所求!1分

   

   (2)方法一 作CE⊥AB于E,C1E1⊥A1B1于E1,連EE1,

則AB⊥面CC1E1E,因此平面PAB⊥面CC1E1E。

因為A1B1//AB,所以A1B1//平面PAB。則只需求點E1到平面PAB的距離。

作E1H⊥EP于H,則E1H⊥平面PAB,則E1H即為所求距離。  …………6分

求得 …………8分

方法二:設B1到平面PAB的距離為h,則由

  ………………8分

   (3)設平面PAB與平面PA1B1的交線為l,由(2)知,A1B1//平面PAB,

則A1B1//l,因為AB⊥面CC1E1E,則l⊥面CC1E1E,

所以∠EPE1就是二面有AB―P―A1B的平面角。 ………………9分

要使平面PAB⊥平面PA1B1,只需∠EPE1=90°。  ………………10分

在矩形CEE1C1中,

解得

  • <menu id="tf9y3"><source id="tf9y3"><acronym id="tf9y3"></acronym></source></menu>
    <menu id="tf9y3"></menu>
        <ul id="tf9y3"><tr id="tf9y3"></tr></ul>

              解法二:(1)取B1C1的中點O,則A1O⊥B1C1,

              以O為坐標原點,建立空間直角坐標系如圖,

                 (2)是平面PAB的一個法向量,

                 ………………5分

                 ………………6分

                ………………8分

                 (3)設P點坐標為(),則

              是平面PAB的一個法向量,與(2)同理有

                  令

                  同理可求得平面PA1B1的一個法向量   ………………10分

                  要使平面PAB⊥平面PA1B1,只需

                    ………………11分

                  解得: …………12分

              21.(理)解:(1)由條件得

                 

                 (2)①設直線m ……5分

                 

                  ②不妨設M,N的坐標分別為

              …………………8分

              因直線m的斜率不為零,故

                 (文)解:(1)設  …………2分

                 

                  故所求雙曲線方程為:

                 (2)設,

                 

                  由焦點半徑,  ………………8分

                 

              22.(1)證明:

                  所以在[0,1]上為增函數,   ………………3分

                 (2)解:由

                 

                 (3)解:由(1)與(2)得 …………9分

                  設存在正整數k,使得對于任意的正整數n,都有成立,

                     ………………10分

                 

                  ,   ………………11分

                  當,   ………………12分

                  當    ………………13分

                  所在存在正整數

                  都有成立.   ………………14分

               

               

               

               


              同步練習冊答案
              <nav id="tf9y3"></nav>