在數(shù)列{an}中.a1=3.an=-an-1-2n+1(n≥2.且nN*).(Ⅰ)求a2.a3的值,(Ⅱ)證明:數(shù)列{an+n}是等比數(shù)列.并求{an}的通項公式,(Ⅲ)求數(shù)列{an}的前n項和Sn. 查看更多

 

題目列表(包括答案和解析)

在數(shù)列{an}中,a1=3,且對任意大于1的正整數(shù)n,點(,)在直線xy=0上,則an=___________________.

查看答案和解析>>

在數(shù)列{an }中,a1=8,an+1 -an = -3,則 - 49是此數(shù)列中的第  項。w.w.w.k.s.5.u.c.o.m       

(A)19      (B)20     (C)21         (D)不是數(shù)列中的項。

查看答案和解析>>

在數(shù)列{an}中,a1=1,當n≥2時,an,Sn,Sn成等比數(shù)列.

(1)求a2,a3,a4,并推出an的表達式;

(2)用數(shù)學歸納法證明所得的結(jié)論;

(3)求數(shù)列{an}所有項的和.

查看答案和解析>>

在數(shù)列{an}中,a1=1,當n≥2時,an,Sn,Sn成等比數(shù)列.

(1)求a2,a3,a4,并推出an的表達式;(2)用數(shù)學歸納法證明所得的結(jié)論;

(3)求數(shù)列{an}前n項的和.

 

查看答案和解析>>

在數(shù)列{an}中,a1=1,當n≥2時,an,Sn,Sn成等比數(shù)列.
(1)求a2,a3,a4,并推出an的表達式;(2)用數(shù)學歸納法證明所得的結(jié)論;
(3)求數(shù)列{an}前n項的和.

查看答案和解析>>

一、選擇題:本大題共8小題,每小題5分,共40分.

1.B         2.C         3.A         4.A       5.B       6.C      7.D     8.C

二、填空題:本大題共6小題,每小題5分,共30分.

9.0.3                 10.-1               11.4

12.24;81             13.1;45°          14.2 |x|

注:兩空的題目,第一個空2分,第二個空3分.

三、解答題:本大題共6小題,共80分.

15.(本小題滿分12分)

(Ⅰ)解:

∵函數(shù)f(x)=asinx+bcosx的圖象經(jīng)過點

          2分  即                   4分

解得a=1,b=-.                                                         6分

(Ⅱ)解:

由(Ⅰ)得f(x)=sinx-cosx=2sin().                                   8分

∵0≤x≤π,              ∴-                               9分

當x-,即x=時,sin取得最大值1.                        11分

∴f(x)在[0,π]上的最大值為2,此時x=.                                   12分

16.(本小題滿分13分)

(Ⅰ)解:

記“甲投球命中”為事件A,“乙投球命中”為事件B,則A,B相互獨立,

且P(A)=,P(B)=.

那么兩人均沒有命中的概率P=P()=P()P()=.         -5分

(Ⅱ)解:

記“乙恰好比甲多命中1次”為事件C,“乙恰好投球命中1次且甲恰好投球命中0次”為事件C1,“乙恰好投球命中2次且甲恰好投球命中1次”為事件C2,則C=C1+C2,C1,C2為互斥事件.

,                                             8分

?                                           11分

P(C)=P(C1)+P(C2)=.                                                        13分

17.(本小題滿分13分)

解法一:

連結(jié)BD.

∵ABCD-A1B1C1D1是正四棱柱,

∴B1B⊥平面ABCD,

∴BD是B1D在平面ABCD上的射影,

∵AC⊥BD,

根據(jù)三垂線定理得,AC⊥B1D.              5分

(Ⅱ)解:

設AC∩BD=F,連結(jié)EF.

∵DE⊥平面ABCD,且AC⊥BD,

根據(jù)三垂線定理得AC⊥FE,    又AC⊥FB,

∴∠EFB是二面角E-AC-B的平面角.                                       -9分

在Rt△EDF中,由DE=DF=,得∠EFD=45°.                                12分

∴∠EFB=180°-45°=135°,

即二面角E-AC-B的大小是135°.                                            13分

解法二:

∵ABCD-A1B1C1D1是正四棱柱,

<form id="tajtn"></form>

<menu id="tajtn"></menu>

如圖,以D為原點,直線DA,DC,DD1分別為x軸,

y軸,z軸,建立空間直角坐標系.             1分

D(0,0,0),A(1,0,0),B(1,1,0),C(0,1,0),

B1(1,1,).                               3分

(Ⅰ)證明:

=(-1,1,0),  ,

=0,

∴AC⊥B1D.                                                            6分

(Ⅱ)解:

連結(jié)BD,設AC∩BD=F,連結(jié)EF.

∵DE⊥平面ABCD,且AC⊥BD,

∴AC⊥FE,AC⊥FB,

∴∠EFB是二面角E-AC-B的平面角.                                         9分

∵底面ABCD是正方形     ∴F,

,                                      12分

∴二面角E-AC-B的大小是135°                                              13分

18.(本小題滿分14分)

(Ⅰ)解:

∵a1=3,an=-an1-2n+1(n≥2,且n∈N*),

∴a2=-a1-4+1=-6,                   2分   a3=-a2-6+1=1.               4分

(Ⅱ)證明:

∴數(shù)列{an+n}是首項為a1+1=4,公比為-1的等比數(shù)列.                          7分

∴an+n=4?(-1)n1, 即an=4?(-1)n1-n,

∴{an}的通項公式為an=4?(-1)n1-n(n∈N*).                                   9分

(Ⅲ)解:

∵{an}的通項公式an=4?(-1)n1-n(n∈N*),

所以當n是奇數(shù)時,Sn=?12分

當n是偶數(shù)時,Sn=?(n2+n).

綜上,Sn=                                     14分

19.(本小題滿分14分)

(Ⅰ)解:

依題意,直線l的斜率存在,設直線l的方程為y=kx+

將其代入x2=2y,消去y整理得x2-2kx-1=0.                                  2分

設A,B的坐標分別為A(x1,y1),B(x2,y2),  則x1x2=-1.                       3分

將拋物線的方程改寫為y=x2,求導得y′=x.

所以過點A的切線l1的斜率是k1=x1,過點B的切線l2的斜率是k2=x2,

因為k1k2=x1x2=-1,所以l1⊥l2.                                              6分

(Ⅱ)解:

直線l1的方程為y-y1=k1(x-x1),即y-=x1(x-x1),

同理,直線l2的方程為y-=x2(x-x2),

聯(lián)立這兩個方程,消去y得=x2(x-x2)-x1(x-x1),

整理得(x1-x2)=0,注意到x1≠x2,所以x=.                   10分

此時)y=.                    12分

由(Ⅰ)知,x1+x2=2k,    所以x==k∈R,

所以點M的軌跡方程是y=.                                              14分

20.(本小題滿分14分)

(Ⅰ)解:

f(x)的導數(shù)f′(x)=9x2-4.

令f′(x)>0,解得x>,或x<-;  令f′(x)<0,解得-<x<.

從而f(x)的單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為.     3分

(Ⅱ)解:

由f(x)≤0,  得-a≥3x3-4x+1.                                                4分

由(Ⅰ)得,函數(shù)y=3x3-4x+1在內(nèi)單調(diào)遞增,在內(nèi)單調(diào)遞減,

從而當x=-時,函數(shù)y=3x3-4x+1取得最大值.                            6分

因為對于任意x∈[-2,0],不等式f(x)≤0恒成立,

故-a≥,即a≤-,

從而a的最大值是-.                                                    8分

(Ⅲ)解:

當x變化時,f(x),f′(x)變化情況如下表:

x

f′(x)

+

0

0

+

f(x)

極大值a+

極小值a

①由f(x)的單調(diào)性,當極大值a+<0或極小值a>0時,方程f(x)=0最多有一個實數(shù)根;

②當a=-時,解方程f(x)=0,得x=-,x=,即方程f(x)=0只有兩個相異的實數(shù)根;

③當a=時,解方程f(x)=0,得x=,x=-,即方程f(x)=0只有兩個相異的實數(shù)根.

如果方程f(x)=0存在三個相異的實數(shù)根,則解得

a∈.                                                           12分

事實上,當a∈時,

∵f(-2)=-15+a<-15+<0,且f(2),17+a>17->0,

所以方程f(x)=0在內(nèi)各有一根.

綜上,若方程f(x)=0存在三個相異的實數(shù)根,則a的取值范圍是.         14分

 


同步練習冊答案