已知拋物線的方程為x2=2y.F是拋物線的焦點(diǎn).過(guò)點(diǎn)F的直線l與拋物線相交于A.B兩點(diǎn).分別過(guò)點(diǎn)A.B作拋物線的兩條切線l1和l2.記l1和l2相交于點(diǎn)M.(Ⅰ)證明:l1⊥l2,(Ⅱ)求點(diǎn)M的軌跡方程. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分14分)

已知橢圓,其左準(zhǔn)線為,右準(zhǔn)線為,拋物線以坐標(biāo)原點(diǎn)為頂點(diǎn),為準(zhǔn)線,兩點(diǎn).

(1)求拋物線的標(biāo)準(zhǔn)方程;

(2)求線段的長(zhǎng)度.

 

查看答案和解析>>

(本小題滿分14分)

已知F1,F2分別是橢圓+=1的左、右焦點(diǎn),曲線C是以坐標(biāo)原點(diǎn)為頂點(diǎn),以F2為焦點(diǎn)的拋物線,自點(diǎn)F1引直線交曲線CP、Q兩個(gè)不同的交點(diǎn),點(diǎn)P關(guān)于x軸的對(duì)稱點(diǎn)記為M.設(shè)=λ.

(Ⅰ)求曲線C的方程;

(Ⅱ)證明:=-λ

(Ⅲ)若λ∈[2,3],求|PQ|的取值范圍.

 

 

查看答案和解析>>

(本小題滿分14分)
已知橢圓,其左準(zhǔn)線為,右準(zhǔn)線為,拋物線以坐標(biāo)原點(diǎn)為頂點(diǎn),為準(zhǔn)線,兩點(diǎn).
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)求線段的長(zhǎng)度.

查看答案和解析>>

(本小題滿分14分)
已知橢圓,其左準(zhǔn)線為,右準(zhǔn)線為,拋物線以坐標(biāo)原點(diǎn)為頂點(diǎn),為準(zhǔn)線,兩點(diǎn).
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)求線段的長(zhǎng)度.

查看答案和解析>>

(本小題滿分14分)

設(shè)橢圓方程為拋物線方程為如圖4所示,過(guò)點(diǎn)軸的平行線,與拋物線在第一象限的交點(diǎn)為G.已知拋物線在點(diǎn)G的切線經(jīng)過(guò)橢圓的右焦點(diǎn)

       (1)求滿足條件的橢圓方程和拋物線方程;

       (2)設(shè)AB分別是橢圓長(zhǎng)軸的左、右端點(diǎn),試探究在拋物線上是否存在點(diǎn)P,使得為直角三角形?若存在,請(qǐng)指出共有幾個(gè)這樣的點(diǎn)?并說(shuō)明理由(不必具體求出這些點(diǎn)的坐標(biāo)) 。

查看答案和解析>>

一、選擇題:本大題共8小題,每小題5分,共40分.

1.B         2.C         3.A         4.A       5.B       6.C      7.D     8.C

二、填空題:本大題共6小題,每小題5分,共30分.

9.0.3                 10.-1               11.4

12.24;81             13.1;45°          14.2 |x|

注:兩空的題目,第一個(gè)空2分,第二個(gè)空3分.

三、解答題:本大題共6小題,共80分.

15.(本小題滿分12分)

(Ⅰ)解:

∵函數(shù)f(x)=asinx+bcosx的圖象經(jīng)過(guò)點(diǎn),

          2分  即                   4分

解得a=1,b=-.                                                         6分

(Ⅱ)解:

由(Ⅰ)得f(x)=sinx-cosx=2sin().                                   8分

∵0≤x≤π,              ∴-                               9分

當(dāng)x-,即x=時(shí),sin取得最大值1.                        11分

∴f(x)在[0,π]上的最大值為2,此時(shí)x=.                                   12分

16.(本小題滿分13分)

(Ⅰ)解:

記“甲投球命中”為事件A,“乙投球命中”為事件B,則A,B相互獨(dú)立,

且P(A)=,P(B)=.

那么兩人均沒(méi)有命中的概率P=P()=P()P()=.         -5分

(Ⅱ)解:

記“乙恰好比甲多命中1次”為事件C,“乙恰好投球命中1次且甲恰好投球命中0次”為事件C1,“乙恰好投球命中2次且甲恰好投球命中1次”為事件C2,則C=C1+C2,C1,C2為互斥事件.

,                                             8分

?                                           11分

P(C)=P(C1)+P(C2)=.                                                        13分

17.(本小題滿分13分)

解法一:

<menu id="bguel"><strong id="bguel"></strong></menu>
      <ul id="bguel"><noscript id="bguel"></noscript></ul>

        連結(jié)BD.

        ∵ABCD-A1B1C1D1是正四棱柱,

        ∴B1B⊥平面ABCD,

        ∴BD是B1D在平面ABCD上的射影,

        ∵AC⊥BD,

        根據(jù)三垂線定理得,AC⊥B1D.              5分

        (Ⅱ)解:

        設(shè)AC∩BD=F,連結(jié)EF.

        ∵DE⊥平面ABCD,且AC⊥BD,

        根據(jù)三垂線定理得AC⊥FE,    又AC⊥FB,

        ∴∠EFB是二面角E-AC-B的平面角.                                       -9分

        在Rt△EDF中,由DE=DF=,得∠EFD=45°.                                12分

        ∴∠EFB=180°-45°=135°,

        即二面角E-AC-B的大小是135°.                                            13分

        解法二:

        ∵ABCD-A1B1C1D1是正四棱柱,

        <table id="bguel"></table><nav id="bguel"><strong id="bguel"></strong></nav>

          如圖,以D為原點(diǎn),直線DA,DC,DD1分別為x軸,

          y軸,z軸,建立空間直角坐標(biāo)系.             1分

          D(0,0,0),A(1,0,0),B(1,1,0),C(0,1,0),

          B1(1,1,).                               3分

          (Ⅰ)證明:

          =(-1,1,0),  ,

          =0,

          ∴AC⊥B1D.                                                            6分

          (Ⅱ)解:

          連結(jié)BD,設(shè)AC∩BD=F,連結(jié)EF.

          ∵DE⊥平面ABCD,且AC⊥BD,

          ∴AC⊥FE,AC⊥FB,

          ∴∠EFB是二面角E-AC-B的平面角.                                         9分

          ∵底面ABCD是正方形     ∴F,

          ,                                      12分

          ∴二面角E-AC-B的大小是135°                                              13分

          18.(本小題滿分14分)

          (Ⅰ)解:

          ∵a1=3,an=-an1-2n+1(n≥2,且n∈N*),

          ∴a2=-a1-4+1=-6,                   2分   a3=-a2-6+1=1.               4分

          (Ⅱ)證明:

          ∴數(shù)列{an+n}是首項(xiàng)為a1+1=4,公比為-1的等比數(shù)列.                          7分

          ∴an+n=4?(-1)n1, 即an=4?(-1)n1-n,

          ∴{an}的通項(xiàng)公式為an=4?(-1)n1-n(n∈N*).                                   9分

          (Ⅲ)解:

          ∵{an}的通項(xiàng)公式an=4?(-1)n1-n(n∈N*),

          所以當(dāng)n是奇數(shù)時(shí),Sn=?12分

          當(dāng)n是偶數(shù)時(shí),Sn=?(n2+n).

          綜上,Sn=                                     14分

          19.(本小題滿分14分)

          (Ⅰ)解:

          依題意,直線l的斜率存在,設(shè)直線l的方程為y=kx+,

          將其代入x2=2y,消去y整理得x2-2kx-1=0.                                  2分

          設(shè)A,B的坐標(biāo)分別為A(x1,y1),B(x2,y2),  則x1x2=-1.                       3分

          將拋物線的方程改寫(xiě)為y=x2,求導(dǎo)得y′=x.

          所以過(guò)點(diǎn)A的切線l1的斜率是k1=x1,過(guò)點(diǎn)B的切線l2的斜率是k2=x2,

          因?yàn)閗1k2=x1x2=-1,所以l1⊥l2.                                              6分

          (Ⅱ)解:

          直線l1的方程為y-y1=k1(x-x1),即y-=x1(x-x1),

          同理,直線l2的方程為y-=x2(x-x2),

          聯(lián)立這兩個(gè)方程,消去y得=x2(x-x2)-x1(x-x1),

          整理得(x1-x2)=0,注意到x1≠x2,所以x=.                   10分

          此時(shí))y=.                    12分

          由(Ⅰ)知,x1+x2=2k,    所以x==k∈R,

          所以點(diǎn)M的軌跡方程是y=.                                              14分

          20.(本小題滿分14分)

          (Ⅰ)解:

          f(x)的導(dǎo)數(shù)f′(x)=9x2-4.

          令f′(x)>0,解得x>,或x<-;  令f′(x)<0,解得-<x<.

          從而f(x)的單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為.     3分

          (Ⅱ)解:

          由f(x)≤0,  得-a≥3x3-4x+1.                                                4分

          由(Ⅰ)得,函數(shù)y=3x3-4x+1在內(nèi)單調(diào)遞增,在內(nèi)單調(diào)遞減,

          從而當(dāng)x=-時(shí),函數(shù)y=3x3-4x+1取得最大值.                            6分

          因?yàn)閷?duì)于任意x∈[-2,0],不等式f(x)≤0恒成立,

          故-a≥,即a≤-

          從而a的最大值是-.                                                    8分

          (Ⅲ)解:

          當(dāng)x變化時(shí),f(x),f′(x)變化情況如下表:

          x

          f′(x)

          +

          0

          0

          +

          f(x)

          極大值a+

          極小值a

          ①由f(x)的單調(diào)性,當(dāng)極大值a+<0或極小值a>0時(shí),方程f(x)=0最多有一個(gè)實(shí)數(shù)根;

          ②當(dāng)a=-時(shí),解方程f(x)=0,得x=-,x=,即方程f(x)=0只有兩個(gè)相異的實(shí)數(shù)根;

          ③當(dāng)a=時(shí),解方程f(x)=0,得x=,x=-,即方程f(x)=0只有兩個(gè)相異的實(shí)數(shù)根.

          如果方程f(x)=0存在三個(gè)相異的實(shí)數(shù)根,則解得

          a∈.                                                           12分

          事實(shí)上,當(dāng)a∈時(shí),

          ∵f(-2)=-15+a<-15+<0,且f(2),17+a>17->0,

          所以方程f(x)=0在內(nèi)各有一根.

          綜上,若方程f(x)=0存在三個(gè)相異的實(shí)數(shù)根,則a的取值范圍是.         14分

           


          同步練習(xí)冊(cè)答案