(Ⅱ)若對(duì)于任意x[-2.0].不等式f(x)≤0恒成立.求a的最大值,=0存在三個(gè)相異的實(shí)數(shù)根.求a的取值范圍. 查看更多

 

題目列表(包括答案和解析)

若對(duì)任意x∈A,y∈B,()有唯一確定的f(x,y)與之對(duì)應(yīng),則稱(chēng)f(x,y)為關(guān)于x,y的二元函數(shù).現(xiàn)定義滿(mǎn)足下列性質(zhì)的二元函數(shù)f(x,y)為關(guān)于實(shí)數(shù)x,y的廣義“距離”:

(1)非負(fù)性:f(x,y)≥0,當(dāng)且僅當(dāng)x=y(tǒng)時(shí)取等號(hào);

(2)對(duì)稱(chēng)性:f(x,y)=f(y,x);

(3)三角形不等式:f(x,y)≤f(x,z)+f(z,y)對(duì)任意的實(shí)數(shù)z均成立.

今給出三個(gè)二元函數(shù),請(qǐng)選出所有能夠成為關(guān)于x,y的廣義“距離”的序號(hào):

①f(x,y)=|x-y|;②f(x,y)=(x-y)2;③f(x,y)=

________.

查看答案和解析>>

若對(duì)任意x∈A,y∈B,()有唯一確定的f(x,y)與之對(duì)應(yīng),則稱(chēng)f(x,y)為關(guān)于x,y的二元函數(shù).現(xiàn)定義滿(mǎn)足下列性質(zhì)的二元函數(shù)f(x,y)為關(guān)于實(shí)數(shù)x,y的廣義“距離”:

(1)非負(fù)性:f(x,y)≥0,當(dāng)且僅當(dāng)x=y(tǒng)時(shí)取等號(hào);

(2)對(duì)稱(chēng)性:f(x,y)=f(y,x);

(3)三角形不等式:f(x,y)≤f(x,z)+f(z,y)對(duì)任意的實(shí)數(shù)z均成立.

今給出三個(gè)二元函數(shù),請(qǐng)選出所有能夠成為關(guān)于x,y的廣義“距離”的序號(hào):

①f(x,y)=|x-y);②f(x,y)=f(x-y)2;③

________

查看答案和解析>>

已知A,B,C是直線(xiàn)l上的不同的三點(diǎn),O是外一點(diǎn),向量,,滿(mǎn)足:-(x2+1)·-[ln(2+3x)-y]·=0.記y=f(x).

(1)求函數(shù)y=f(x)的解析式;

(2)若對(duì)任意x∈[,],不等式|a-lnx|-ln[(x)-3x]>0恒成立,求實(shí)數(shù)a的取值范圍;

(3)若關(guān)于x的方程f(x)=2x+b在[0,1]上恰有兩個(gè)不同的實(shí)根,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

已知函數(shù)f (x)=ln(2+3x)-x2 ..

f (x)在[0, 1]上的極值;

若對(duì)任意x∈[,],不等式|a-lnx|-ln[ f ’(x)+3x]>0成立,求實(shí)數(shù)a的取值范圍;

若關(guān)于x的方程f (x)= -2x+b在[0, 1]上恰有兩個(gè)不同的實(shí)根,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

已知函數(shù)f (x)=ln(2+3x)-x2 ..

(1)求f (x)在[0, 1]上的極值;

(2)若對(duì)任意x∈[,],不等式|a-lnx|-ln[ f ’(x)+3x]>0成立,求實(shí)數(shù)a的取值范圍;

(3)若關(guān)于x的方程f (x)= -2x+b在[0, 1]上恰有兩個(gè)不同的實(shí)根,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

一、選擇題:本大題共8小題,每小題5分,共40分.

1.B         2.C         3.A         4.A       5.B       6.C      7.D     8.C

二、填空題:本大題共6小題,每小題5分,共30分.

9.0.3                 10.-1               11.4

12.24;81             13.1;45°          14.2 |x|

注:兩空的題目,第一個(gè)空2分,第二個(gè)空3分.

三、解答題:本大題共6小題,共80分.

15.(本小題滿(mǎn)分12分)

(Ⅰ)解:

∵函數(shù)f(x)=asinx+bcosx的圖象經(jīng)過(guò)點(diǎn)

          2分  即                   4分

解得a=1,b=-.                                                         6分

(Ⅱ)解:

由(Ⅰ)得f(x)=sinx-cosx=2sin().                                   8分

∵0≤x≤π,              ∴-                               9分

當(dāng)x-,即x=時(shí),sin取得最大值1.                        11分

∴f(x)在[0,π]上的最大值為2,此時(shí)x=.                                   12分

16.(本小題滿(mǎn)分13分)

(Ⅰ)解:

記“甲投球命中”為事件A,“乙投球命中”為事件B,則A,B相互獨(dú)立,

且P(A)=,P(B)=.

那么兩人均沒(méi)有命中的概率P=P()=P()P()=.         -5分

(Ⅱ)解:

記“乙恰好比甲多命中1次”為事件C,“乙恰好投球命中1次且甲恰好投球命中0次”為事件C1,“乙恰好投球命中2次且甲恰好投球命中1次”為事件C2,則C=C1+C2,C1,C2為互斥事件.

,                                             8分

?                                           11分

P(C)=P(C1)+P(C2)=.                                                        13分

17.(本小題滿(mǎn)分13分)

解法一:

  • 連結(jié)BD.

    ∵ABCD-A1B1C1D1是正四棱柱,

    ∴B1B⊥平面ABCD,

    ∴BD是B1D在平面ABCD上的射影,

    ∵AC⊥BD,

    根據(jù)三垂線(xiàn)定理得,AC⊥B1D.              5分

    (Ⅱ)解:

    設(shè)AC∩BD=F,連結(jié)EF.

    ∵DE⊥平面ABCD,且AC⊥BD,

    根據(jù)三垂線(xiàn)定理得AC⊥FE,    又AC⊥FB,

    ∴∠EFB是二面角E-AC-B的平面角.                                       -9分

    在Rt△EDF中,由DE=DF=,得∠EFD=45°.                                12分

    ∴∠EFB=180°-45°=135°,

    即二面角E-AC-B的大小是135°.                                            13分

    解法二:

    ∵ABCD-A1B1C1D1是正四棱柱,

      <pre id="1b5b1"><em id="1b5b1"></em></pre>
        <noscript id="1b5b1"></noscript>
        • 如圖,以D為原點(diǎn),直線(xiàn)DA,DC,DD1分別為x軸,

          y軸,z軸,建立空間直角坐標(biāo)系.             1分

          D(0,0,0),A(1,0,0),B(1,1,0),C(0,1,0),

          B1(1,1,).                               3分

          (Ⅰ)證明:

          =(-1,1,0),  ,

          =0,

          ∴AC⊥B1D.                                                            6分

          (Ⅱ)解:

          連結(jié)BD,設(shè)AC∩BD=F,連結(jié)EF.

          ∵DE⊥平面ABCD,且AC⊥BD,

          ∴AC⊥FE,AC⊥FB,

          ∴∠EFB是二面角E-AC-B的平面角.                                         9分

          ∵底面ABCD是正方形     ∴F,

          ,                                      12分

          ∴二面角E-AC-B的大小是135°                                              13分

          18.(本小題滿(mǎn)分14分)

          (Ⅰ)解:

          ∵a1=3,an=-an1-2n+1(n≥2,且n∈N*),

          ∴a2=-a1-4+1=-6,                   2分   a3=-a2-6+1=1.               4分

          (Ⅱ)證明:

          ∴數(shù)列{an+n}是首項(xiàng)為a1+1=4,公比為-1的等比數(shù)列.                          7分

          ∴an+n=4?(-1)n1, 即an=4?(-1)n1-n,

          ∴{an}的通項(xiàng)公式為an=4?(-1)n1-n(n∈N*).                                   9分

          (Ⅲ)解:

          ∵{an}的通項(xiàng)公式an=4?(-1)n1-n(n∈N*),

          所以當(dāng)n是奇數(shù)時(shí),Sn=?12分

          當(dāng)n是偶數(shù)時(shí),Sn=?(n2+n).

          綜上,Sn=                                     14分

          19.(本小題滿(mǎn)分14分)

          (Ⅰ)解:

          依題意,直線(xiàn)l的斜率存在,設(shè)直線(xiàn)l的方程為y=kx+,

          將其代入x2=2y,消去y整理得x2-2kx-1=0.                                  2分

          設(shè)A,B的坐標(biāo)分別為A(x1,y1),B(x2,y2),  則x1x2=-1.                       3分

          將拋物線(xiàn)的方程改寫(xiě)為y=x2,求導(dǎo)得y′=x.

          所以過(guò)點(diǎn)A的切線(xiàn)l1的斜率是k1=x1,過(guò)點(diǎn)B的切線(xiàn)l2的斜率是k2=x2,

          因?yàn)閗1k2=x1x2=-1,所以l1⊥l2.                                              6分

          (Ⅱ)解:

          直線(xiàn)l1的方程為y-y1=k1(x-x1),即y-=x1(x-x1),

          同理,直線(xiàn)l2的方程為y-=x2(x-x2),

          聯(lián)立這兩個(gè)方程,消去y得=x2(x-x2)-x1(x-x1),

          整理得(x1-x2)=0,注意到x1≠x2,所以x=.                   10分

          此時(shí))y=.                    12分

          由(Ⅰ)知,x1+x2=2k,    所以x==k∈R,

          所以點(diǎn)M的軌跡方程是y=.                                              14分

          20.(本小題滿(mǎn)分14分)

          (Ⅰ)解:

          f(x)的導(dǎo)數(shù)f′(x)=9x2-4.

          令f′(x)>0,解得x>,或x<-;  令f′(x)<0,解得-<x<.

          從而f(x)的單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為.     3分

          (Ⅱ)解:

          由f(x)≤0,  得-a≥3x3-4x+1.                                                4分

          由(Ⅰ)得,函數(shù)y=3x3-4x+1在內(nèi)單調(diào)遞增,在內(nèi)單調(diào)遞減,

          從而當(dāng)x=-時(shí),函數(shù)y=3x3-4x+1取得最大值.                            6分

          因?yàn)閷?duì)于任意x∈[-2,0],不等式f(x)≤0恒成立,

          故-a≥,即a≤-,

          從而a的最大值是-.                                                    8分

          (Ⅲ)解:

          當(dāng)x變化時(shí),f(x),f′(x)變化情況如下表:

          x

          f′(x)

          +

          0

          0

          +

          f(x)

          極大值a+

          極小值a

          ①由f(x)的單調(diào)性,當(dāng)極大值a+<0或極小值a>0時(shí),方程f(x)=0最多有一個(gè)實(shí)數(shù)根;

          ②當(dāng)a=-時(shí),解方程f(x)=0,得x=-,x=,即方程f(x)=0只有兩個(gè)相異的實(shí)數(shù)根;

          ③當(dāng)a=時(shí),解方程f(x)=0,得x=,x=-,即方程f(x)=0只有兩個(gè)相異的實(shí)數(shù)根.

          如果方程f(x)=0存在三個(gè)相異的實(shí)數(shù)根,則解得

          a∈.                                                           12分

          事實(shí)上,當(dāng)a∈時(shí),

          ∵f(-2)=-15+a<-15+<0,且f(2),17+a>17->0,

          所以方程f(x)=0在內(nèi)各有一根.

          綜上,若方程f(x)=0存在三個(gè)相異的實(shí)數(shù)根,則a的取值范圍是.         14分

           


          同步練習(xí)冊(cè)答案
          <ruby id="1b5b1"></ruby>