題目列表(包括答案和解析)
【選做題】本題包括A、B、C、D四小題,請選定其中兩題,并在相應的答題區(qū)域內作答.若多做,則按作答的前兩題評分.解答時應寫出文字說明、證明過程或演算步驟.
A. 選修4-1:幾何證明選講
(本小題滿分10分)
如圖,與⊙相切于點,為的中點,
過點引割線交⊙于,兩點,
求證: .
【選做題】在A,B,C,D四個小題中只能選做2個小題,每小題10分,共計20分.請在答題卡指定區(qū)域內作答,解答時應寫出文字說明、證明過程或演算步驟.
A.選修4—1:幾何證明選講
如圖,AB是⊙O的直徑,弦BD、CA的延長線相交
于點E,EF垂直BA的延長線于點F.
求證: .
B.選修4-2:矩陣與變換
已知, 求矩陣B.
C.選修4—4:坐標系與參數方程
已知圓C:,直線:,求過點C且與直線垂直的直線的極坐標方程.
D.選修4-5:不等式選講
已知,求函數的最小值以及取最小值時所對應的值.
【選做題】在A,B,C,D四個小題中只能選做2個小題,每小題10分,共計20分.請在答題卡指定區(qū)域內作答,解答時應寫出文字說明、證明過程或演算步驟.
A.選修4—1:幾何證明選講
如圖,AB是⊙O的直徑,弦BD、CA的延長線相交
于點E,EF垂直BA的延長線于點F.
求證: .
B.選修4-2:矩陣與變換
已知, 求矩陣B.
C.選修4—4:坐標系與參數方程
已知圓C:,直線:,求過點C且與直線垂直的直線的極坐標方程.
D.選修4-5:不等式選講
已知,求函數的最小值以及取最小值時所對應的值.
一、填空題:
1.;2. 79 ;3.1; 4. ; 5.;6. ; 7.16 ;8.7; 9.2; 10. ; 11. ; 12. ; 13. 2; 14. 3955.
特別說明:有消息說,今年數學的填空題的壓軸題將比較新、比較難,我們在評講時要教育學生有這方面的心理準備。
二、解答題:
15.解:(1)
∵ ∴┉┉┉┉┉┉┉┉┉┉┉┉┉4分
┉┉┉┉┉┉┉7分
(2)∵(
由正弦定理得(2sinA-sinC)cosB=sinBcosC┉┉┉┉┉┉8分
∴2sinAcosB-sinCcosB=sinBcosC ∴2sinAcosB=sin(B+C)
∵ ∴,
∴┉┉┉┉┉┉10分
∴┉┉┉┉┉┉11分
∴┉┉┉┉┉┉12分
又∵,∴ ┉┉┉┉┉┉13分
故函數f(A)的取值范圍是┉┉┉┉┉┉14分
16. 解:(1)∵函數的圖象的對稱軸為
要使在區(qū)間上為增函數,
當且僅當>0且 ……………………………3分
若=1則=-1,
若=2則=-1,1
若=3則=-1,1; ……………………………5分
∴事件包含基本事件的個數是1+2+2=5
∴所求事件的概率為 ……………………………7分
(2)由(Ⅰ)知當且僅當且>0時,
函數上為增函數,
依條件可知試驗的全部結果所構成的區(qū)域為
構成所求事件的區(qū)域為三角形部分。 ………………………………9分
由 ……………………………11分
∴所求事件的概率為 …………………………… 14分
17. (1)證明: 平面平面,,
平面平面=,平面,
平面, ,……… 2分
又為圓的直徑,, 平面。……… 5分
(2)設的中點為,則,又,則,為平行四邊形, ……… 7分
,又平面,平面,
平面!9分
(3)過點作于,平面平面,
平面,,……… 11分
平面,
,……… 14分
. ……… 15分
18. 解:(1)因為直線:過定點T(4,3)……… 2分
由題意,要使圓的面積最小, 定點T(4,3)在圓上,
所以圓的方程為;……… 4分
(2)A(-5,0),B(5,0),設,則……(1)
,,
由成等比數列得,,
即,整理得:,
即……(2)
由(1)(2)得:,,
……………………… 9分
(3)
,……… 11分
由題意,得直線與圓O的一個交點為M(4,3),又知定點Q(,3),
直線:,,則當時有最大值32. ……… 14分
即有最大值為32,
此時直線的方程為.……… 15分
特別說明:第19題、第20題不是完整的壓軸題,原作者都有第3問設計,為了強化考試策略教育,讓學生有信心做壓軸題的開始一兩問,并在考前體會做好基礎題可以拿高分,我們特意進行了刪減處理。特別優(yōu)秀的班級(如市中的奧班,可以添加第三問(祥見文末附件),并將評分標準作相應調整。
19.解:(1)∵,其定義域為,
∴.……………………… 3分
∵是函數的極值點,∴,即.
∵,∴. ……………………… 6分
經檢驗當時,是函數的極值點,
∴. ……………………… 8分
(2)由題意,可知方程在區(qū)間上有根,因為在上是單調減函數,在上是單調增函數,……………………… 10分
所以,……………………… 14分
……………………… 16分
20.解:(1) ┉┉┉┉┉┉2分
┉┉┉┉┉┉5分
┉┉┉┉┉┉8分
(2) ┉┉┉┉┉┉10分
┉┉┉┉┉┉12分
┉┉┉┉┉┉14分
┉┉┉┉┉┉16分
附加題部分
A(1)證明:因為,所以
又是圓O的直徑,所以
又因為(弦切角等于同弧所對圓周角)……………………3分
所以所以
又因為,所以相似
所以,即 ……………………5分
(2)解:因為,所以,
因為,所以
由(1)知:。所以 ……………………8分
所以,即圓的直徑
又因為,即
解得 ……………………10分
B.解:令 得到: ……………2分
解得: ……………………6
所以,矩陣A的特征值為2和3.
當, 令得,
所以,對應的特征向量為 ……………………8
當, 令得,所以,對應的特征向量為
矩陣A的兩個特征值分別是2和3,它們對應的特征向量分別是和.…10分
C.解:將直線的參數方程化為普通方程為: ……………………2分
將圓C的極坐標方程化為普通方程為: ………………4分
從圓方程中可知:圓心C(1,1),半徑 ,
所以,圓心C到直線的距離 …………6分
所以直線與圓C相交. ……………………7分
所以直線被圓C截得的弦長為.……………………10分
D.證明:要證原不等式成立,只須證:
即只須證:
由柯西不等式易知上式顯然成立,所以原不等式成立.
22.解:(1)設“小明中一等獎”為事件B1 ,“小輝中一等獎”為事件B2 ,事件B1與事件B2相互獨立,他們倆都中一等獎,則P(B1B2)=P(B1)P(B2)=0.0001
所以,購買兩張這種彩票都中一等獎的概率為.………..3分
(2)設“購買一張這種彩票中一等獎”為事件A,“購買一張這種彩票中二等獎”為事件B,顯然,事件A與事件B互斥,
所以, ……………………5分
故購買一張這種彩票能中獎的概率為0.1.……………………6分
(3)對應不中獎、中二等獎、中一等獎,的分布列如下:
……………………9分
購買一張這種彩票的期望收益為損失元.……………………10分
23. 解:(1)設P(x,y),根據題意,得.………3分
化簡,得.……………………………………………4分
(2)設過Q的直線方程為,代入拋物線方程,整理,得.
∴△=.解得.………………………………………6分
所求切線方程為(也可以用導數求得切線方程),
此時切點的坐標為(2,1),(-2,1),且切點在曲線C上. …………8分
由對稱性知所求的區(qū)域的面積為
.……………………………10分
附件:
第19題第3問:
(3)若對任意的都有成立,求實數的取值范圍.
(3)對任意的都有≥成立等價于對任意的都有≥.……………………… 7分
當[1,]時,.
∴函數在上是增函數.
∴.………………………9分
∵,且,.
①當且
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com