題目列表(包括答案和解析)
(本小題滿(mǎn)分14分)
已知函數(shù)f(x)=-x3+bx2+cx+bc,
(1)若函數(shù)f(x)在x=1處有極值-,試確定b、c的值;
(2)在(1)的條件下,曲線y=f(x)+m與x軸僅有一個(gè)交點(diǎn),求實(shí)數(shù)m的取值范圍;
(3)記g(x)=|f′( x)|(-1≤x≤1)的最大值為M,若M≥k對(duì)任意的b、c恒成立,試求k的取值范圍.
(參考公式:x3-3bx2+4b3=(x+b)(x-2b)2)
(本小題滿(mǎn)分14分)
已知函數(shù),當(dāng)時(shí),取得極小值.
(1)求,的值;
(2)設(shè)直線,曲線.若直線與曲線同時(shí)滿(mǎn)足下列兩個(gè)條件:
①直線與曲線相切且至少有兩個(gè)切點(diǎn);
②對(duì)任意都有.則稱(chēng)直線為曲線的“上夾線”.
試證明:直線是曲線的“上夾線”.
(3)記,設(shè)是方程的實(shí)數(shù)根,若對(duì)于定義域中任意的、,當(dāng),且時(shí),問(wèn)是否存在一個(gè)最小的正整數(shù),使得恒成立,若存在請(qǐng)求出的值;若不存在請(qǐng)說(shuō)明理由.
(本小題滿(mǎn)分14分)
已知函數(shù),當(dāng)時(shí),取得極小值.
(1)求,的值;
(2)設(shè)直線,曲線.若直線與曲線同時(shí)滿(mǎn)足下列兩個(gè)條件:
①直線與曲線相切且至少有兩個(gè)切點(diǎn);
②對(duì)任意都有.則稱(chēng)直線為曲線的“上夾線”.
試證明:直線是曲線的“上夾線”.
(3)記,設(shè)是方程的實(shí)數(shù)根,若對(duì)于定義域中任意的、,當(dāng),且時(shí),問(wèn)是否存在一個(gè)最小的正整數(shù),使得恒成立,若存在請(qǐng)求出的值;若不存在請(qǐng)說(shuō)明理由.
(本小題滿(mǎn)分14分)
已知函數(shù),當(dāng)時(shí),取得極小值.
(1)求,的值;
(2)設(shè)直線,曲線.若直線與曲線同時(shí)滿(mǎn)足下列兩個(gè)條件:
①直線與曲線相切且至少有兩個(gè)切點(diǎn);
②對(duì)任意都有.則稱(chēng)直線為曲線的“上夾線”.
試證明:直線是曲線的“上夾線”.
(3)記,設(shè)是方程的實(shí)數(shù)根,若對(duì)于定義域中任意的、,當(dāng),且時(shí),問(wèn)是否存在一個(gè)最小的正整數(shù),使得恒成立,若存在請(qǐng)求出的值;若不存在請(qǐng)說(shuō)明理由.
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com