設數(shù)組A:{a1,a2,…,an}與數(shù)組B:{b1,b2,…,bn},A與B中的元素不完全相同,分別從A、B中的n個元素中任取m(m≤n)個元素作和,各得Cnm個和.若由A得到的Cnm個和與由B得到的Cnm個和恰好完全相同,則稱數(shù)組A與B是n元中取m的全等和數(shù)組,簡記為DHnm數(shù)組.
(1)判斷數(shù)組A:{5,15,25,45}與B:{0,20,30,40}是否為DH42數(shù)組?
(2)若數(shù)組A:{a1,a2,…,an}與數(shù)組B:{b1,b2,…,bn}是DHnm數(shù)組(m≤n),求證:數(shù)組A與B一定是DHnn數(shù)組
(3)給定數(shù)組A:{a1,a2,a3,a4},其中a1≤a2≤a3≤a4,問是否存在數(shù)組B,使得數(shù)組A與B為DH42數(shù)組?若存在,則求出數(shù)組B;若不存在,請說明理由.