解含參數(shù)不等式時(shí).要特別注意數(shù)形結(jié)合思想.函數(shù)與方程思想.分類討論思想的錄活運(yùn)用. 查看更多

 

題目列表(包括答案和解析)

解關(guān)于x的不等式>1(a>0).

解參數(shù)不等式時(shí)對(duì)于參數(shù)的討論,特別注意不能隨便去分母.

查看答案和解析>>

解不等式(x2+x+1)(x+1)3(x-2)2(3-x)>0.

解高次不等式時(shí)將不等式一邊分解為若干個(gè)一次因式的積,且x的系數(shù)為正.

查看答案和解析>>

設(shè)A={x||x-1|<2},B={x|>0},則AB等于

A.{x|-1<x<3}                                                B.{x|x<0或x>2}

C.{x|-1<x<0}                                                 D.{x|-1<x<0或2<x<3}

本題考查含絕對(duì)值不等式、分式不等式的解法及集合的運(yùn)算.在進(jìn)行集合運(yùn)算時(shí),把解集標(biāo)在數(shù)軸上,借助圖形可直觀求解.

查看答案和解析>>

已知數(shù)列是各項(xiàng)均不為0的等差數(shù)列,公差為d,為其前n項(xiàng)和,且滿足,.?dāng)?shù)列滿足,為數(shù)列的前n項(xiàng)和.

(1)求數(shù)列的通項(xiàng)公式和數(shù)列的前n項(xiàng)和;

(2)若對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍;

(3)是否存在正整數(shù),使得成等比數(shù)列?若存在,求出所有的值;若不存在,請(qǐng)說明理由.

【解析】第一問利用在中,令n=1,n=2,

   即      

解得,, [

時(shí),滿足,

,

第二問,①當(dāng)n為偶數(shù)時(shí),要使不等式恒成立,即需不等式恒成立.   

 ,等號(hào)在n=2時(shí)取得.

此時(shí) 需滿足.  

②當(dāng)n為奇數(shù)時(shí),要使不等式恒成立,即需不等式恒成立.     

 是隨n的增大而增大, n=1時(shí)取得最小值-6.

此時(shí) 需滿足

第三問,

     若成等比數(shù)列,則,

即.

,可得,即,

        .

(1)(法一)在中,令n=1,n=2,

   即      

解得,, [

時(shí),滿足,

,

(2)①當(dāng)n為偶數(shù)時(shí),要使不等式恒成立,即需不等式恒成立.   

 ,等號(hào)在n=2時(shí)取得.

此時(shí) 需滿足.  

②當(dāng)n為奇數(shù)時(shí),要使不等式恒成立,即需不等式恒成立.     

 是隨n的增大而增大, n=1時(shí)取得最小值-6.

此時(shí) 需滿足

綜合①、②可得的取值范圍是

(3),

     若成等比數(shù)列,則,

即.

,可得,即

,且m>1,所以m=2,此時(shí)n=12.

因此,當(dāng)且僅當(dāng)m=2, n=12時(shí),數(shù)列中的成等比數(shù)列

 

查看答案和解析>>

已知函數(shù)=.

(Ⅰ)當(dāng)時(shí),求不等式 ≥3的解集;

(Ⅱ) 若的解集包含,求的取值范圍.

【命題意圖】本題主要考查含絕對(duì)值不等式的解法,是簡單題.

【解析】(Ⅰ)當(dāng)時(shí),=

當(dāng)≤2時(shí),由≥3得,解得≤1;

當(dāng)2<<3時(shí),≥3,無解;

當(dāng)≥3時(shí),由≥3得≥3,解得≥8,

≥3的解集為{|≤1或≥8};

(Ⅱ) ,

當(dāng)∈[1,2]時(shí),==2,

,有條件得,即,

故滿足條件的的取值范圍為[-3,0]

 

查看答案和解析>>


同步練習(xí)冊(cè)答案