平面的一條垂線段OA的長(zhǎng)為6.點(diǎn)B.C在平面上.且,那么B.C兩點(diǎn)間距離的范圍是 . 查看更多

 

題目列表(包括答案和解析)

圓錐曲線上任意兩點(diǎn)連成的線段稱為弦.若圓錐曲線上的一條弦垂直于其對(duì)稱軸,我們將該弦稱之為曲線的垂軸弦.已知點(diǎn)P(
x0,y0)、M(m,n)是圓錐曲線C上不與頂點(diǎn)重合的任意兩點(diǎn),MN是垂直于x軸的一條垂軸弦,直線MP,NP分別交x軸于點(diǎn)E(xE,0)和點(diǎn)F(xF,0).
(Ⅰ)試用x0,y0,m,n的代數(shù)式分別表示xE和xF;
(Ⅱ)已知“若點(diǎn)P(x0,y0)是圓C:x2+y2=R2上的任意一點(diǎn)(
x0•y0≠0),MN是垂直于x軸的垂軸弦,直線MP、NP分別交x軸于點(diǎn)E(xE,0)和點(diǎn)F(xF,0),則xExF=R2”.類比這一結(jié)論,我們猜想:“若曲線C的方程為
x2
a2
+
y2
b2
=1(a>b>0)
(如圖),則xE•xF也是與點(diǎn)M、N、P位置無(wú)關(guān)的定值”,請(qǐng)你對(duì)該猜想給出證明.

查看答案和解析>>

精英家教網(wǎng)四面體C-ABD中,CB=CD,AB=AD,∠BAD=90°. E、F,Q分別是BC、AC、BD的中點(diǎn).
(1)求證:AC⊥BD;
(2)在AC上確定一點(diǎn)M,使BF∥平面MED?并說(shuō)明理由;
(3)若CQ為底面ABD的一條斜線段,請(qǐng)問(wèn)CA,CB有可能相等嗎?證明你的結(jié)論.

查看答案和解析>>

下列命題正確的個(gè)數(shù)為( �。�
①斜線與它在平面內(nèi)的射影所成的角是這條斜線和這個(gè)平面內(nèi)所有直線所成的角的最小角.
②二面角α-l-β的平面角是過(guò)棱l上任一點(diǎn)O,分別在兩個(gè)半平面內(nèi)任意兩條射線OA,OB所成角的∠AOB的最大角.
③如果一條直線和一個(gè)平面的一條斜線垂直,那么它也和這條斜線在這個(gè)平面內(nèi)的射影垂直.
④設(shè)A是空間一點(diǎn),
n
為空間任一非零向量,適合條件的集合{
M
|
AM
n
=0
}的所有點(diǎn)M構(gòu)成的圖形是過(guò)點(diǎn)A且與
n
垂直的一個(gè)平面.

查看答案和解析>>

精英家教網(wǎng)圓錐曲線上任意兩點(diǎn)連成的線段稱為弦.若圓錐曲線上的一條弦垂直于其對(duì)稱軸,我們將該弦稱之為曲線的垂軸弦.已知點(diǎn)P(x0,y0)、M(m,n)是圓錐曲線C上不與頂點(diǎn)重合的任意兩點(diǎn),MN是垂直于x軸的一條垂軸弦,直線MP、NP分別交x軸于點(diǎn)E(xE,0)和點(diǎn)F(xF,0).
(1)試用x0,y0,m,n的代數(shù)式分別表示xE和xF;
(2)若C的方程為
x2
a2
+
y2
b2
=1(a>b>0)
(如圖),求證:xE•xF是與MN和點(diǎn)P位置無(wú)關(guān)的定值;
(3)請(qǐng)選定一條除橢圓外的圓錐曲線C,試探究xE和xF經(jīng)過(guò)某種四則運(yùn)算(加、減、乘、除),其結(jié)果是否是與MN和點(diǎn)P位置無(wú)關(guān)的定值,寫出你的研究結(jié)論并證明.

查看答案和解析>>

已知AO為平面的一條斜線,O為斜足,OB為OA在平面內(nèi)的射影,直線OC在平面內(nèi),且,則的大小為(  �。�

(A)   (B)  �。–)   (D)

 

查看答案和解析>>


同步練習(xí)冊(cè)答案