(2)①當(dāng)0≤t≤6時(shí).點(diǎn)P與點(diǎn)Q都在AB上運(yùn)動(dòng).設(shè)PM與AD交于點(diǎn)G.QN與AD交于點(diǎn)F.則AQ=t,AF=,QF=t,Ap=t+2,AG=1+,PG=t+ 查看更多

 

題目列表(包括答案和解析)

如圖,在Rt△AOB中,∠AOB=90°,OA=3cm,OB=4cm,以點(diǎn)O為坐標(biāo)原點(diǎn)建立坐標(biāo)系,設(shè)P、Q精英家教網(wǎng)分別為AB、OB邊上的動(dòng)點(diǎn)它們同時(shí)分別從點(diǎn)A、O向B點(diǎn)勻速運(yùn)動(dòng),速度均為1cm/秒,設(shè)P、Q移動(dòng)時(shí)間為t(0≤t≤4)
(1)過點(diǎn)P做PM⊥OA于M,求證:AM:AO=PM:BO=AP:AB,并求出P點(diǎn)的坐標(biāo)(用t表示);
(2)求△OPQ面積S(cm2),與運(yùn)動(dòng)時(shí)間t(秒)之間的函數(shù)關(guān)系式,當(dāng)t為何值時(shí),S有最大值?最大是多少?
(3)當(dāng)t為何值時(shí),△OPQ為直角三角形?
(4)證明無論t為何值時(shí),△OPQ都不可能為正三角形.若點(diǎn)P運(yùn)動(dòng)速度不變改變Q的運(yùn)動(dòng)速度,使△OPQ為正三角形,求Q點(diǎn)運(yùn)動(dòng)的速度和此時(shí)t的值.

查看答案和解析>>

如圖,在Rt△AOB中,∠AOB=90°,OA=3cm,OB=4cm,以點(diǎn)O為坐標(biāo)原點(diǎn)建立坐標(biāo)系,設(shè)P、Q分別為AB、OB邊上的動(dòng)點(diǎn)它們同時(shí)分別從點(diǎn)A、O向B點(diǎn)勻速運(yùn)動(dòng),速度均為1cm/秒,設(shè)P、Q移動(dòng)時(shí)間為t(0≤t≤4)
(1)過點(diǎn)P做PM⊥OA于M,求證:AM:AO=PM:BO=AP:AB,并求出P點(diǎn)的坐標(biāo)(用t表示);
(2)求△OPQ面積S(cm2),與運(yùn)動(dòng)時(shí)間t(秒)之間的函數(shù)關(guān)系式,當(dāng)t為何值時(shí),S有最大值?最大是多少?
(3)當(dāng)t為何值時(shí),△OPQ為直角三角形?
(4)證明無論t為何值時(shí),△OPQ都不可能為正三角形.若點(diǎn)P運(yùn)動(dòng)速度不變改變Q的運(yùn)動(dòng)速度,使△OPQ為正三角形,求Q點(diǎn)運(yùn)動(dòng)的速度和此時(shí)t的值.

查看答案和解析>>

如圖,在Rt△AOB中,∠AOB=90°,OA=3cm,OB=4cm,以點(diǎn)O為坐標(biāo)原點(diǎn)建立坐標(biāo)系,設(shè)P、Q分別為AB、OB邊上的動(dòng)點(diǎn)它們同時(shí)分別從點(diǎn)A、O向B點(diǎn)勻速運(yùn)動(dòng),速度均為1cm/秒,設(shè)P、Q移動(dòng)時(shí)間為t(0≤t≤4)
(1)過點(diǎn)P做PM⊥OA于M,求證:AM:AO=PM:BO=AP:AB,并求出P點(diǎn)的坐標(biāo)(用t表示);
(2)求△OPQ面積S(cm2),與運(yùn)動(dòng)時(shí)間t(秒)之間的函數(shù)關(guān)系式,當(dāng)t為何值時(shí),S有最大值?最大是多少?
(3)當(dāng)t為何值時(shí),△OPQ為直角三角形?
(4)證明無論t為何值時(shí),△OPQ都不可能為正三角形.若點(diǎn)P運(yùn)動(dòng)速度不變改變Q的運(yùn)動(dòng)速度,使△OPQ為正三角形,求Q點(diǎn)運(yùn)動(dòng)的速度和此時(shí)t的值.

查看答案和解析>>

如圖,在Rt△AOB中,∠AOB=90°,OA=3cm,OB=4cm,以點(diǎn)O為坐標(biāo)原點(diǎn)建立坐標(biāo)系,設(shè)P、Q分別為AB、OB邊上的動(dòng)點(diǎn)它們同時(shí)分別從點(diǎn)A、O向B點(diǎn)勻速運(yùn)動(dòng),速度均為1cm/秒,設(shè)P、Q移動(dòng)時(shí)間為t(0≤t≤4)
(1)過點(diǎn)P做PM⊥OA于M,求證:AM:AO=PM:BO=AP:AB,并求出P點(diǎn)的坐標(biāo)(用t表示);
(2)求△OPQ面積S(cm2),與運(yùn)動(dòng)時(shí)間t(秒)之間的函數(shù)關(guān)系式,當(dāng)t為何值時(shí),S有最大值?最大是多少?
(3)當(dāng)t為何值時(shí),△OPQ為直角三角形?
(4)證明無論t為何值時(shí),△OPQ都不可能為正三角形.若點(diǎn)P運(yùn)動(dòng)速度不變改變Q的運(yùn)動(dòng)速度,使△OPQ為正三角形,求Q點(diǎn)運(yùn)動(dòng)的速度和此時(shí)t的值.

查看答案和解析>>

如圖,在Rt△AOB中,∠AOB=90°,OA=3cm,OB=4cm,以點(diǎn)O為坐標(biāo)原點(diǎn)建立坐標(biāo)系,設(shè)P、Q分別為AB、OB邊上的動(dòng)點(diǎn)它們同時(shí)分別從點(diǎn)A、O向B點(diǎn)勻速運(yùn)動(dòng),速度均為1cm/秒,設(shè)P、Q移動(dòng)時(shí)間為t(0≤t≤4)
(1)過點(diǎn)P做PM⊥OA于M,求證:AM:AO=PM:BO=AP:AB,并求出P點(diǎn)的坐標(biāo)(用t表示);
(2)求△OPQ面積S(cm2),與運(yùn)動(dòng)時(shí)間t(秒)之間的函數(shù)關(guān)系式,當(dāng)t為何值時(shí),S有最大值?最大是多少?
(3)當(dāng)t為何值時(shí),△OPQ為直角三角形?
(4)證明無論t為何值時(shí),△OPQ都不可能為正三角形.若點(diǎn)P運(yùn)動(dòng)速度不變改變Q的運(yùn)動(dòng)速度,使△OPQ為正三角形,求Q點(diǎn)運(yùn)動(dòng)的速度和此時(shí)t的值.

查看答案和解析>>


同步練習(xí)冊答案