題目列表(包括答案和解析)
解:(1)由題意知,當、
運動到
秒時,如圖①,過
作
交
于
點,則四邊形
是平行四邊形.
∵,
.
∴.
∴.
∴ .解得
. 5分
(2)分三種情況討論:
① 當時,如圖②作
交
于
,則有
即.
∵
,
∴,
∴,
解得. 6分
② 當時,如圖③,過
作
于H.
則
,
∴.
∴.7分
③ 當時,如圖④.
則.
. -------------------------------------8分
綜上所述,當、
或
時,
為等腰三角形.
解:(1)如圖①AH=AB
(2)數量關系成立.如圖②,延長CB至E,使BE=DN
∵ABCD是正方形
∴AB=AD,∠D=∠ABE=90°
∴Rt△AEB≌Rt△AND
∴AE=AN,∠EAB=∠NAD
∴∠EAM=∠NAM=45°
∵AM=AM
∴△AEM≌△ANM
∵AB、AH是△AEM和△ANM對應邊上的高,
∴AB=AH
(3)如圖③分別沿AM、AN翻折△AMH和△ANH,
得到△ABM和△AND
∴BM=2,DN=3,∠B=∠D=∠BAD=90°
分別延長BM和DN交于點C,得正方形ABCE.
由(2)可知,AH=AB=BC=CD=AD.
設AH=x,則MC=, NC=
圖②
在Rt⊿MCN中,由勾股定理,得
∴
解得.(不符合題意,舍去)
∴AH=6.
解:(1)如圖,與
互相垂直平分. (1分)
證明如下:連結、
,
∵ //
,
∴四邊形是平行四邊形. (2分)
⊥
,
∴⊥
,
∵∠=90º,
為
的中點,
∴, (2分)
∴四邊形是菱形. (1分)
∴與
互相垂直平分.
解:(2)設,則
,
. (2分)
在Rt△中,∵
, (1分)
∴. (1分)
(1分)
∴. (2分)
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com