題目列表(包括答案和解析)
如圖,梯形ABCD中,AD∥BC,∠BAD=90°,CE⊥AD于點E,AD=4cm,BC=2cm,AB=3cm.從初始時刻開始,動點P、Q分別從點A、B同時出發(fā),運動速度均為1 cm/s,動點P沿A→B→C→E的方向運動,到點E停止;動點Q沿B→C→E→D的方向運動,到點D停止.設(shè)運動時間為s,PAQ的面積為y cm2.(這里規(guī)定:線段是面積為0的三角形)解答下列問題:
(1)當x=" 2" s時,y=________cm2;當= s時,y=________cm2;
(2)當動點P在線段BC上運動,即3 ≤ x ≤ 5時,求y與之間的函數(shù)關(guān)系式,并求出時的值;
(3)當動點P在線段CE上運動,即5 < x ≤ 8 時,求y與之間的函數(shù)關(guān)系式;
(4)直接寫出在整個運動過程中,使PQ與四邊形ABCE的對角線平行的所有x的值.
如圖,梯形ABCD中,AD∥BC,∠BAD=90°,CE⊥AD于點E,AD=4cm,BC=2cm,AB=3cm.從初始時刻開始,動點P、Q 分別從點A、B同時出發(fā),運動速度均為1 cm/s,動點P沿A→B→C→E的方向運動,到點E停止;動點Q沿B→C→E→D的方向運動,到點D停止.設(shè)運動時間為s,PAQ的面積為y cm2.(這里規(guī)定:線段是面積為0的三角形)解答下列問題:
(1)當x= 2 s時,y=________cm2;當= s時,y=________cm2;
(2)當動點P在線段BC上運動,即3 ≤ x ≤ 5時,求y與之間的函數(shù)關(guān)系式,并求出時的值;
(3)當動點P在線段CE上運動,即5 < x ≤ 8 時,求y與之間的函數(shù)關(guān)系式;
(4)直接寫出在整個運動過程中,使PQ與四邊形ABCE的對角線平行的所有x的值.
一 選擇題(共20分,每小題2分)
1. B 2 . B 3. C 4 .A 5 C 6 . C 7. C 8. A 9 . B 10. D
.
二,填空題。(共24分,每小題3分)
11 . 12 . 13 . 14 . 15. 16 . 17 . 18 ..
三、
19解:
當時,原式=()
20(1)如圖
(2)優(yōu)等人數(shù)為
良等人數(shù)為
(3)優(yōu)、良等級的概率分別是
(4)該校數(shù)學(xué)成績優(yōu)等、良等人數(shù)共占40%、等人數(shù)僅占10%,說明該校期末考試成績比較好.(只要合理,均給分)
21.解: (1)∵在Rt△AOB中,∠AOB=900,∠ABO=600,OB=1
∴AB=2,OA=
∴點A坐標
∵二次函數(shù)y=ax2+bx+c的圖像經(jīng)過點A、點B和點C
∴
解得
∴該二次函數(shù)的表達式
(2)對稱軸為;頂點坐標為.
(3)∵對稱軸為,A
∴點D坐標
∴四邊形ABCD為等腰梯形
22.解:過點D作DE⊥BC交BC延長線于點E,過點E作EF∥AD交AB于點F
在Rt△CDE中,∠CED=90°,∠DCE=30°,CD=10
∴DE=5, CE=
∴BE=
∵太陽光線AD與水平地面成30°角
∴∠FEB=30°
在Rt△BFE中,∠B=90°,∠FEB=30°,BE=
∴BF=BE?tan∠FEB==
∵AF=DE=5
∴AB=AF+BF===19.1≈19
答旗桿AB的高度為19米.
23解:⑴
⑵如圖所示
⑶如圖所示
24.解:(1)如圖1,AE=AF. 理由:證明△ABE≌△ADF(ASA)
(2)如圖2, PE=PF.
理由:過點P作PM⊥BC于M,PN⊥DC于N,則PM=PN.由此可證得△PME≌△PNF(ASA),從而證得PE=PF.
(3) PE、PF不具有(2)中的數(shù)量關(guān)系.
當點P在AC的中點時,PE、PF才具有(2)中的數(shù)量關(guān)系.
25.解:(1)由已知條件,得
(2)由已知條件,得
解得
∴應(yīng)從A村運到甲庫50噸,運到乙?guī)?50噸;從B村運到甲庫190噸,運到乙?guī)?10噸,這樣調(diào)運就能使總運費最少.
(3)這個同學(xué)說的對.
理由:設(shè)A村的運費為元,則,
∴當x=200時,A村的運費最少,
而y=-2x+9680(0≤x≤200)
∵K=-2<0
∴X=200時,y有最小值,兩村的總運費也是最少。
即當x=200時,A村和兩村的總運費都最少。
26.解:(1)如圖,作DE⊥AB于E,CF⊥AB于F,
依題意可知,四邊形CDEF是矩形,AE=BF,
在Rt△ADE中,
∴梯形ABCD的周長為, 面積為.
(2)∵PQ平分梯形ABCD的周長,
∴
解得
∴當PQ平分梯形ABCD的周長時,
(3)∵PQ平分梯形ABCD的面積
∴①當點P在AD邊上時,
解得
②當點P在DC邊上時,
即
解得
③當點P在CB邊上時,
∵△<0,∴此方程無解.
∴當PQ平分梯形ABCD的面積時,
(4).
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com