本節(jié)課所用的教材是由上海教育出版社出版的上海市高中三年級數(shù闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣鎴eГ閸ゅ嫰鏌涢锝嗙缁炬儳顭烽弻鏇熺箾閻愵剚鐝旂紒鐐劤閻忔繈鍩為幋锔藉亹鐎规洖娴傞弳锟犳⒑閹肩偛鈧洟鎮ц箛娑樼疅闁归棿鐒﹂崑瀣煕椤愶絿绠橀柣鐔村姂濮婅櫣绱掑Ο铏圭懆闂佽绻戝畝鍛婁繆閻㈢ǹ绀嬫い鏍ㄦ皑椤斿﹪姊虹憴鍕剹闁搞劑浜跺顐c偅閸愨晝鍘介柟鍏肩暘閸ㄥ宕弻銉︾厵闁告垯鍊栫€氾拷查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)如圖所示的多面體是由底面為的長方體被截面所截面而得到的,其中. 求點到平面的距離.

查看答案和解析>>

(本小題滿分12分)如圖所示的幾何體是由以等邊三角形為底面的棱柱被平面所截而得,已知平面,,,, 的中點,

(Ⅰ)求的長;

(Ⅱ)求證:面;

(Ⅲ)求平面與平面相交所成銳角二面角的余弦值.

 

查看答案和解析>>

(本小題滿分12分)

某小區(qū)要建一座八邊形的休閑小區(qū),它的主體造型的平面圖是由二個相同的矩形ABCD和EFGH構成的面積為200m2的十字型地域,計劃在正方形MNPQ上建一座“觀景花壇”,造價為4 200元/m2,在四個相同的矩形上(圖中陰影部分)鋪花崗巖地坪,造價為210元/m2,再在四個空角(如△DQH等)上鋪草坪,造價為80元/m2.

(1)設總造價為S元,AD長為m,試建立S與x的函數(shù)關系;

(2)當x為何值時,S最��?并求這個最小值.

 

查看答案和解析>>

(本小題滿分12分)如圖所示的多面體是由底面為的長方體被截面所截面而得到的,其中. 求點到平面的距離.

查看答案和解析>>

(本小題滿分12分)

如圖所示的幾何體是由以正三角形為底面的直棱柱

被平面所截而得. ,的中點.

(Ⅰ)當時,求平面與平面的夾角的余弦值;

(Ⅱ)當為何值時,在棱上存在點,使平面?

 

 

 

查看答案和解析>>


同步練習冊答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣鎴eГ閸ゅ嫰鏌ら崫銉︽毄濞寸姵鑹鹃埞鎴炲箠闁稿﹥顨嗛幈銊р偓闈涙啞瀹曞弶鎱ㄥ璇蹭壕闂佺粯渚楅崰娑氱不濞戞ǚ妲堟繛鍡樺姈椤忕喖姊绘担鑺ョ《闁革綇绠撻獮蹇涙晸閿燂拷 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐礃椤曆囧煘閹达附鍋愰柛娆忣槹閹瑧绱撴担鍝勵€岄柛銊ョ埣瀵濡搁埡鍌氫簽闂佺ǹ鏈粙鎴︻敂閿燂拷