由特殊到一般.從具體到抽象.以“引導(dǎo)設(shè)問(wèn) 為主線.學(xué)生通過(guò)對(duì)問(wèn)題的思考和解答.體驗(yàn)學(xué)習(xí)過(guò)程.自主探索和獲取知識(shí).從而得到圓的參數(shù)方程.同時(shí)在探索的過(guò)程中也提高學(xué)生的數(shù)學(xué)抽象思維能力. 查看更多

 

題目列表(包括答案和解析)

12、在中學(xué)數(shù)學(xué)中,從特殊到一般,從具體到抽象是常見(jiàn)的一種思維形式如從f(x)=lgx可抽象出f(x1•x2)=f(x1)+f(x2)的性質(zhì),那么由h(x)=
任意指數(shù)函數(shù)均可,如h(x)=2x
(填一個(gè)具體的函數(shù))可抽象出性質(zhì)h(x1+x2)=h(x1)•h(x2).

查看答案和解析>>

已知f(x)=lgx:
(1)在中學(xué)數(shù)學(xué)中,從特殊到一般,從具體到抽象是常見(jiàn)的一種思維形式,如從f(x)=lgx可抽象出性質(zhì):f(x1•x2)=f(x1)+f(x2).
對(duì)于下面兩個(gè)具體函數(shù),試分別抽象出一個(gè)與上面類似的性質(zhì):
由h(x)=2x可抽象出性質(zhì)為
h(x1+x2)=h(x1)•h(x2
h(x1+x2)=h(x1)•h(x2
,
由φ(x)=3x+1可抽象出性質(zhì)為
φ(x1+x2)=φ(x1)+φ(x2
φ(x1+x2)=φ(x1)+φ(x2

(2)g(x)=f(x2+6x+4)-f(x),求g(x)的最小值.

查看答案和解析>>

在中學(xué)數(shù)學(xué)中,從特殊到一般,從具體到抽象是常見(jiàn)的一種思維形式如從可抽象出的性質(zhì),那么由=       (填一個(gè)具體的函數(shù))可抽象出性質(zhì)

 

查看答案和解析>>

已知f(x)=lgx:
(1)在中學(xué)數(shù)學(xué)中,從特殊到一般,從具體到抽象是常見(jiàn)的一種思維形式,如從f(x)=lgx可抽象出性質(zhì):f=f(x1)+f(x2).
對(duì)于下面兩個(gè)具體函數(shù),試分別抽象出一個(gè)與上面類似的性質(zhì):
由h(x)=2x可抽象出性質(zhì)為_(kāi)_____,
由φ(x)=3x+1可抽象出性質(zhì)為_(kāi)_____.
(2)g(x)=f(x2+6x+4)-f(x),求g(x)的最小值.

查看答案和解析>>

在中學(xué)數(shù)學(xué)中,從特殊到一般,從具體到抽象是常見(jiàn)的一種思維形式如從可抽象出的性質(zhì),那么由=       (填一個(gè)具體的函數(shù))可抽象出性質(zhì)

 

查看答案和解析>>


同步練習(xí)冊(cè)答案