1.兩點(diǎn)間的距離公式:不論A(1.1).B(2.2)在坐標(biāo)平面上什闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣鎴eГ閸ゅ嫰鏌涢锝嗙缁炬儳顭烽弻鏇熺箾閻愵剚鐝旂紒鐐劤閻忔繈鍩為幋锔藉亹鐎规洖娴傞弳锟犳⒑閹肩偛鈧洟鎮ц箛娑樼疅闁归棿鐒﹂崑瀣煕椤愶絿绠橀柣鐔村姂濮婅櫣绱掑Ο铏圭懆闂佽绻戝畝鍛婁繆閻㈢ǹ绀嬫い鏍ㄦ皑椤斿﹪姊虹憴鍕剹闁搞劑浜跺顐c偅閸愨晝鍘介柟鍏肩暘閸ㄥ宕弻銉︾厵闁告垯鍊栫€氾拷查看更多

 

題目列表(包括答案和解析)

下列語(yǔ)句表達(dá)不是算法的是

[  ]
A.

利用平面內(nèi)兩點(diǎn)間的距離公式求平面內(nèi)M(0,0)與N(2,2)兩點(diǎn)間的距離

B.

從長(zhǎng)沙到北京的火車票是300元

C.

利用公式法解方程2x2+x-1=0

D.

利用公式S=πr2,計(jì)算半徑為3的圓的面積

查看答案和解析>>

下列語(yǔ)句表達(dá)不是算法的是


  1. A.
    利用平面內(nèi)兩點(diǎn)間的距離公式求平面內(nèi)M(0,0)與N(2,2)兩點(diǎn)間的距離
  2. B.
    從長(zhǎng)沙到北京的火車票是300元
  3. C.
    利用公式法解方程2x2+x-1=0
  4. D.
    利用公式S=πr2,計(jì)算半徑為3的圓的面積

查看答案和解析>>

在等差數(shù)列{an}中,a4S4=-14,S5-a5=-14,其中Sn是數(shù)列{an}的前n項(xiàng)之和,曲線Cn的方程是
x2
|an|
+
y2
4
=1,直線l的方程是y=x+3.
(1)求數(shù)列{an}的通項(xiàng)公式;   
(2)判斷Cn與l的位置關(guān)系;
(3)當(dāng)直線l與曲線Cn相交于不同的兩點(diǎn)An,Bn時(shí),令Mn=(|an|+4)|AnBn|,求Mn的最小值.
(4)對(duì)于直線l和直線外的一點(diǎn)P,用“l(fā)上的點(diǎn)與點(diǎn)P距離的最小值”定義點(diǎn)P到直線l的距離與原有的點(diǎn)到直線距離的概念是等價(jià)的.若曲線Cn與直線l不相交,試以類似的方式給出一條曲線Cn與直線l間“距離”的定義,并依照給出的定義,在Cn中自行選定一個(gè)橢圓,求出該橢圓與直線l的“距離”.

查看答案和解析>>

在等差數(shù)列中,,其中是數(shù)列的前項(xiàng)之和,曲線的方程是,直線的方程是

求數(shù)列的通項(xiàng)公式;

當(dāng)直線與曲線相交于不同的兩點(diǎn),時(shí),令,

的最小值;

對(duì)于直線和直線外的一點(diǎn)P,用“上的點(diǎn)與點(diǎn)P距離的最小值”定義點(diǎn)P到直線的距離與原有的點(diǎn)到直線距離的概念是等價(jià)的,若曲線與直線不相交,試以類似的方式給出一條曲線與直線間“距離”的定義,并依照給出的定義,在中自行選定一個(gè)橢圓,求出該橢圓與直線的“距離”.

查看答案和解析>>

在等差數(shù)列{an}中,a4S4=-14,S5-a5=-14,其中Sn是數(shù)列{an}的前n項(xiàng)之和,曲線Cn的方程是+=1,直線l的方程是y=x+3.
(1)求數(shù)列{an}的通項(xiàng)公式;   
(2)判斷Cn與l的位置關(guān)系;
(3)當(dāng)直線l與曲線Cn相交于不同的兩點(diǎn)An,Bn時(shí),令Mn=(|an|+4)|AnBn|,求Mn的最小值.
(4)對(duì)于直線l和直線外的一點(diǎn)P,用“l(fā)上的點(diǎn)與點(diǎn)P距離的最小值”定義點(diǎn)P到直線l的距離與原有的點(diǎn)到直線距離的概念是等價(jià)的.若曲線Cn與直線l不相交,試以類似的方式給出一條曲線Cn與直線l間“距離”的定義,并依照給出的定義,在Cn中自行選定一個(gè)橢圓,求出該橢圓與直線l的“距離”.

查看答案和解析>>


同步練習(xí)冊(cè)答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣鎴eГ閸ゅ嫰鏌ら崫銉︽毄濞寸姵鑹鹃埞鎴炲箠闁稿﹥顨嗛幈銊р偓闈涙啞瀹曞弶鎱ㄥ璇蹭壕闂佺粯渚楅崰娑氱不濞戞ǚ妲堟繛鍡樺姈椤忕喖姊绘担鑺ョ《闁革綇绠撻獮蹇涙晸閿燂拷 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐礃椤曆囧煘閹达附鍋愰柛娆忣槹閹瑧绱撴担鍝勵€岄柛銊ョ埣瀵濡搁埡鍌氫簽闂佺ǹ鏈粙鎴︻敂閿燂拷