曲線的切線:設曲線C是函數(shù)y=f(x)的圖象.在曲線C上取一點.過P.Q兩點作割線.當點Q沿著曲線逐漸向點P接近時.即→0時.割線PQ的極限位置PT.直線PT叫做曲線在點P處的切線.設切線PT的傾斜角為割線PQ的斜率的極限就是曲線C在點P處的切線的斜率. 即 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)=lnx-
1
2
ax2+(a-1)x
(a∈R且a≠0).
(Ⅰ)求函數(shù)f(x)的單調區(qū)間;
(Ⅱ) 記函數(shù)y=F(x)的圖象為曲線C.設點A(x1,y1),B(x2,y2)是曲線C上的不同兩點,如果在曲線C上存在點M(x0,y0),使得:①x0=
x1+x2
2
;②曲線C在M處的切線平行于直線AB,則稱函數(shù)F(x)存在“中值相依切線”.
試問:函數(shù)f(x)是否存在“中值相依切線”,請說明理由.

查看答案和解析>>

已知函數(shù)f(x)=ex+ax(e為自然對數(shù)的底數(shù),近似值為2.718).
(1)求f(x)的單調區(qū)間;
(2)不等式f(x)<x的解集為P,若M={x|
12
≤x≤2}且M∩P=M,求實數(shù)a的取值范圍;
(3)當a=-1,且設g(x)=exlnx,是否存在x0∈(0,+∞),使曲線C:y=g(x)-f(x)在點x0處的切線斜率與f(x)在R上的最小值相等?若存在,求符合條件的個數(shù);若不存在,請說明理由.

查看答案和解析>>

已知函數(shù)f(x)=lnx-
1
2
ax2(a∈R,a≠0)

(I)求函數(shù)f(x)的單調區(qū)間;
(II)已知點A(1,-
1
2
a),設B(x1,y1)(x1>1)是曲線C:y=f(x)
圖角上的點,曲線C上是否存在點M(x0,y0)滿足:①x0=
1+x1
2
;②曲線C在點M處的切線平行于直線AB?請說明理由.

查看答案和解析>>

已知函數(shù)f(x)=lnx,g(x)=
1
2
ax2-(a-1)x,(a∈R).
(Ⅰ)已知函數(shù)y=g(x)的零點至少有一個在原點右側,求實數(shù)a的范圍.
(Ⅱ)記函數(shù)y=F(x)的圖象為曲線C.設點A(x1,y1),B(x2,y2)是曲線C上的不同兩點.如果在曲線C上存在點M(x0,y0),使得:①x0=
x1+x2
2
;②曲線C在點M處的切線平行于直線AB,則稱函數(shù)f(x)=存在“中值相依切線”.
試問:函數(shù)G(x)=f(x)-g(x)(a∈R且a≠0)是否存在“中值相依切線”,請說明理由.

查看答案和解析>>

已知函數(shù)f(x)=
12
m(x-1)2-2x+3+lnx
,常數(shù)m≥1
(1)求函數(shù)f(x)單調遞減區(qū)間;
(2)當m=2時,設函數(shù)g(x)=f(x)-f(2-x)+3的定義域為D,?x1,x2∈D,且x1+x2=1,求證:g(x1)+g(x2),g(x1)-g(x2),g(2x1)+g(2x2),g(2x1)-g(2x2)中必有一個是常數(shù)(不含x1,x2);
(3)若曲線C:y=f(x)在點P(1,1)處的切線l與曲線C有且只有一個公共點,求m的值.

查看答案和解析>>


同步練習冊答案