題目列表(包括答案和解析)
已知函數(shù),
.
(Ⅰ)若函數(shù)依次在
處取到極值.求
的取值范圍;
(Ⅱ)若存在實(shí)數(shù),使對任意的
,不等式
恒成立.求正整數(shù)
的最大值.
【解析】第一問中利用導(dǎo)數(shù)在在處取到極值點(diǎn)可知導(dǎo)數(shù)為零可以解得方程有三個(gè)不同的實(shí)數(shù)根來分析求解。
第二問中,利用存在實(shí)數(shù),使對任意的
,不等式
恒成立轉(zhuǎn)化為
,恒成立,分離參數(shù)法求解得到范圍。
解:(1)
①
(2)不等式 ,即
,即
.
轉(zhuǎn)化為存在實(shí)數(shù),使對任意的
,不等式
恒成立.
即不等式在
上恒成立.
即不等式在
上恒成立.
設(shè),則.
設(shè),則
,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911530204634527/SYS201207091153477963415106_ST.files/image016.png">,有
.
故在區(qū)間
上是減函數(shù)。又
故存在,使得
.
當(dāng)時(shí),有
,當(dāng)
時(shí),有
.
從而在區(qū)間
上遞增,在區(qū)間
上遞減.
又[來源:]
所以當(dāng)時(shí),恒有
;當(dāng)
時(shí),恒有
;
故使命題成立的正整數(shù)m的最大值為5
古希臘數(shù)學(xué)家丟番圖(公元250年前后)在《算術(shù)》中就提到了一元二次方程的問題,不過當(dāng)時(shí)古希臘人還沒有尋求到它的求根公式,只能用圖解等方法來求解。在歐幾里得的《幾何原本》中,形如
(a>0,b>0)的方程的圖解法是:如圖,以
和b為兩直角邊做Rt△ABC,再在斜邊上截取
,則AD的長就是所求方程的解。
(1)請用含字母a、b的代數(shù)式表示AD的長。
(2)請利用你已學(xué)的知識說明該圖解法的正確性,并說說這種解法的遺憾之處。
(本題滿分18分,其中第1小題5分,第2小題5分,第3小題8分)
在平面直角坐標(biāo)系中,已知為坐標(biāo)原點(diǎn),點(diǎn)
的坐標(biāo)為
,點(diǎn)
的坐標(biāo)為
,其中
且
.設(shè)
.
(1)若,
,
,求方程
在區(qū)間
內(nèi)的解集;
(2)若點(diǎn)是過點(diǎn)
且法向量為
的直線
上的動點(diǎn).當(dāng)
時(shí),設(shè)函數(shù)
的值域?yàn)榧?img width=21 height=17 src="http://thumb.zyjl.cn/pic1/1899/sx/18/333018.gif" >,不等式
的解集為集合
. 若
恒成立,求實(shí)數(shù)
的最大值;
(3)根據(jù)本題條件我們可以知道,函數(shù)的性質(zhì)取決于變量
、
和
的值. 當(dāng)
時(shí),試寫出一個(gè)條件,使得函數(shù)
滿足“圖像關(guān)于點(diǎn)
對稱,且在
處
取得最小值”.(說明:請寫出你的分析過程.本小題將根據(jù)你對問題探究的完整性和在研究過程中所體現(xiàn)的思維層次,給予不同的評分.)
(本題滿分18分,其中第1小題5分,第2小題5分,第3小題8分)
在平面直角坐標(biāo)系中,已知為坐標(biāo)原點(diǎn),點(diǎn)
的坐標(biāo)為
,點(diǎn)
的坐標(biāo)為
,其中
且
.設(shè)
.
(1)若,
,
,求方程
在區(qū)間
內(nèi)的解集;
(2)若點(diǎn)是過點(diǎn)
且法向量為
的直線
上的動點(diǎn).當(dāng)
時(shí),設(shè)函數(shù)
的值域?yàn)榧?img src="http://thumb.zyjl.cn/pic5/tikupic/89/5/a05qa.gif" style="vertical-align:middle;" />,不等式
的解集為集合
. 若
恒成立,求實(shí)數(shù)
的最大值;
(3)根據(jù)本題條件我們可以知道,函數(shù)的性質(zhì)取決于變量
、
和
的值. 當(dāng)
時(shí),試寫出一個(gè)條件,使得函數(shù)
滿足“圖像關(guān)于點(diǎn)
對稱,且在
處
取得最小值”.(說明:請寫出你的分析過程.本小題將根據(jù)你對問題探究的完整性和在研究過程中所體現(xiàn)的思維層次,給予不同的評分.)
(本題滿分18分,其中第1小題5分,第2小題5分,第3小題8分)
在平面直角坐標(biāo)系中,已知為坐標(biāo)原點(diǎn),點(diǎn)
的坐標(biāo)為
,點(diǎn)
的坐標(biāo)為
,其中
且
.設(shè)
.
(1)若,
,
,求方程
在區(qū)間
內(nèi)的解集;
(2)若點(diǎn)是過點(diǎn)
且法向量為
的直線
上的動點(diǎn).當(dāng)
時(shí),設(shè)函數(shù)
的值域?yàn)榧?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052111495710937700/SYS201205211152429218217731_ST.files/image019.png">,不等式
的解集為集合
. 若
恒成立,求實(shí)數(shù)
的最大值;
(3)根據(jù)本題條件我們可以知道,函數(shù)的性質(zhì)取決于變量
、
和
的值. 當(dāng)
時(shí),試寫出一個(gè)條件,使得函數(shù)
滿足“圖像關(guān)于點(diǎn)
對稱,且在
處
取得最小值”.(說明:請寫出你的分析過程.本小題將根據(jù)你對問題探究的完整性和在研究過程中所體現(xiàn)的思維層次,給予不同的評分.)
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com