集合知識(shí)可以使我們更好地理解數(shù)學(xué)中廣泛使用的集合語言.并用集合語言表達(dá)數(shù)學(xué)問題.運(yùn)用集合觀點(diǎn)去研究和解決數(shù)學(xué)問題.1.學(xué)習(xí)集合的基礎(chǔ)能力是準(zhǔn)確描述集合中的元素.熟練運(yùn)用集合的各種符號(hào).如....=.A.∪.∩等等, 查看更多

 

題目列表(包括答案和解析)

因金融危機(jī),某公司的出口額下降,為此有關(guān)專家提出兩種促進(jìn)出口的方案,每種方案都需要分兩年實(shí)施.若實(shí)施方案一,預(yù)計(jì)第一年可以使出口額恢復(fù)到危機(jī)前的1.0倍、0.9倍、0.8倍的概率分別為0.3、0.3、0.4;第二年可以使出口額為第一年的1.25倍、1.0倍的概率分別是0.5、0.5.若實(shí)施方案二,預(yù)計(jì)第一年可以使出口額恢復(fù)到危機(jī)前的1.2倍、l.0倍、0.8倍的概率分別為0.2、0.3、0.5;第二年可以使出口額為第一年的1.2倍、1.0倍的概率分別是0.4、0.6.實(shí)施每種方案第一年與第二年相互獨(dú)立.令ξ1(i=1,2)表示方案實(shí)施兩年后出口額達(dá)到危機(jī)前的倍數(shù).
(Ⅰ)寫出ξ1、ξ2的分布列;
(Ⅱ)實(shí)施哪種方案,兩年后出口額超過危機(jī)前出口額的概率更大?
(Ⅲ)不管哪種方案,如果實(shí)施兩年后出口額達(dá)不到、恰好達(dá)到、超過危機(jī)前出口額,預(yù)計(jì)利潤(rùn)分別為10萬元、15萬元、20萬元,問實(shí)施哪種方案的平均利潤(rùn)更大.

查看答案和解析>>

18、某柑桔基地因冰雪災(zāi)害,使得果林嚴(yán)重受損,為此有關(guān)專家提出兩種拯救果林的方案,每種方案都需分兩年實(shí)施;若實(shí)施方案一,預(yù)計(jì)當(dāng)年可以使柑桔產(chǎn)量恢復(fù)到災(zāi)前的1.0倍、0.9倍、0.8倍的概率分別是0.3、0.3、0.4;第二年可以使柑桔產(chǎn)量為上一年產(chǎn)量的1.25倍、1.0倍的概率分別是0.5、0.5.若實(shí)施方案二,預(yù)計(jì)當(dāng)年可以使柑桔產(chǎn)量達(dá)到災(zāi)前的1.2倍、1.0倍、0.8倍的概率分別是0.2、0.3、0.5;第二年可以使柑桔產(chǎn)量為上一年產(chǎn)量的1.2倍、1.0倍的概率分別是0.4、0.6.實(shí)施每種方案,第二年與第一年相互獨(dú)立.令ξi(i=1,2)表示方案實(shí)施兩年后柑桔產(chǎn)量達(dá)到災(zāi)前產(chǎn)量的倍數(shù).
(1).寫出ξ1、ξ2的分布列;
(2).實(shí)施哪種方案,兩年后柑桔產(chǎn)量超過災(zāi)前產(chǎn)量的概率更大?
(3).不管哪種方案,如果實(shí)施兩年后柑桔產(chǎn)量達(dá)不到災(zāi)前產(chǎn)量,預(yù)計(jì)可帶來效益10萬元;兩年后柑桔產(chǎn)量恰好達(dá)到災(zāi)前產(chǎn)量,預(yù)計(jì)可帶來效益15萬元;柑桔產(chǎn)量超過災(zāi)前產(chǎn)量,預(yù)計(jì)可帶來效益20萬元;問實(shí)施哪種方案所帶來的平均效益更大?

查看答案和解析>>

17、某地因干旱,使果林嚴(yán)重受損,專家提出兩種補(bǔ)救方案,每種方案都需分兩年實(shí)施;按方案一,預(yù)計(jì)當(dāng)年可以使產(chǎn)量恢復(fù)到以前的1.0倍、0.9倍、0.8倍的概率分別是0.3、0.3、0.4;第二年使產(chǎn)量為上一年產(chǎn)量的1.25倍、1.0倍的概率分別是0.5、0.5;按方案二,預(yù)計(jì)當(dāng)年可以使產(chǎn)量達(dá)到災(zāi)前的1.2倍、1.0倍、0.8倍的概率分別是0.2、0.3、0.5;第二年可以使產(chǎn)量為上一年產(chǎn)量的1.2倍、1.0倍的概率分別是0.4、0.6.實(shí)施每種方案,第二年與第一年相互獨(dú)立.令ξi(i=1,2)表示方案i實(shí)施兩年后產(chǎn)量達(dá)到災(zāi)前產(chǎn)量的倍數(shù).
(1)寫出ξ1、ξ2的分布列.(2)實(shí)施哪種方案,兩年后產(chǎn)量超過災(zāi)前產(chǎn)量的概率更大.

查看答案和解析>>

(2013•肇慶一模)因臺(tái)風(fēng)災(zāi)害,我省某水果基地龍眼樹嚴(yán)重受損,為此有關(guān)專家提出兩種拯救龍眼樹的方案,每種方案都需分四年實(shí)施.若實(shí)施方案1,預(yù)計(jì)第三年可以使龍眼產(chǎn)量恢復(fù)到災(zāi)前的1.0倍、0.9倍、0.8倍的概率分別是0.3、0.3、0.4;第四年可以使龍眼產(chǎn)量為第三年產(chǎn)量的1.25倍、1.0倍的概率分別是0.5、0.5.若實(shí)施方案2,預(yù)計(jì)第三年可以使龍眼產(chǎn)量達(dá)到災(zāi)前的1.2倍、1.0倍、0.8倍的概率分別是0.2、0.3、0.5;第四年可以使龍眼產(chǎn)量為第三年產(chǎn)量的1.2倍、1.0倍的概率分別是0.4、0.6.實(shí)施每種方案第三年與第四年相互獨(dú)立,令ξi(i=1,2)表示方案i實(shí)施后第四年龍眼產(chǎn)量達(dá)到災(zāi)前產(chǎn)量的倍數(shù).
(1)寫出ξ1、ξ2的分布列;
(2)實(shí)施哪種方案,第四年龍眼產(chǎn)量超過災(zāi)前產(chǎn)量的概率更大?
(3)不管哪種方案,如果實(shí)施后第四年龍眼產(chǎn)量達(dá)不到、恰好達(dá)到、超過災(zāi)前產(chǎn)量,預(yù)計(jì)利潤(rùn)分別為10萬元、15萬元、20萬元.問實(shí)施哪種方案的平均利潤(rùn)更大?

查看答案和解析>>

已知集合A={x|x2-4x+3<0},B={x||x-3|≤1},
(1)請(qǐng)根據(jù)集合的交集、并集、補(bǔ)集等運(yùn)算性質(zhì)的特征,設(shè)計(jì)一種集合運(yùn)算:△,可以使A△B={x|1<x<2}并用集合的符號(hào)語言來表示A△B;
(2)按(1)中所確定的運(yùn)算,求出B△A.

查看答案和解析>>


同步練習(xí)冊(cè)答案