本講內(nèi)容主要涉及空間向量的坐標(biāo)及運(yùn)算.空間向量的應(yīng)用.本講是立體幾何的核心內(nèi)容.高考對本講的考察形式為:以客觀題形式考察空間向量的概念和運(yùn)算.結(jié)合主觀題借助空間向量求夾角和距離. 預(yù)測07年高考對本講內(nèi)容的考查將側(cè)重于向量的應(yīng)用.尤其是求夾角.求距離.教材上淡化了利用空間關(guān)系找角.找距離這方面的講解.加大了向量的應(yīng)用.因此作為立體幾何解答題.用向量法處理角和距離將是主要方法.在復(fù)習(xí)時(shí)應(yīng)加大這方面的訓(xùn)練力度. 查看更多

 

題目列表(包括答案和解析)

(遼寧卷理19)如圖,在棱長為1的正方體

中,AP=BQ=b(0<b<1),截面PQEF,截面PQGH

(Ⅰ)證明:平面PQEF和平面PQGH互相垂直;

(Ⅱ)證明:截面PQEF和截面PQGH面積之和是定值,

并求出這個(gè)值;

(Ⅲ)若與平面PQEF所成的角為,求與平面PQGH所成角的正弦值.

說明:本小題主要考查空間中的線面關(guān)系,面面關(guān)系,解三角形等基礎(chǔ)知識,考查空間想象能力與邏輯思維能力。滿分12分.

查看答案和解析>>

(遼寧卷理19)如圖,在棱長為1的正方體

中,AP=BQ=b(0<b<1),截面PQEF,截面PQGH

(Ⅰ)證明:平面PQEF和平面PQGH互相垂直;

(Ⅱ)證明:截面PQEF和截面PQGH面積之和是定值,

并求出這個(gè)值;

(Ⅲ)若與平面PQEF所成的角為,求與平面PQGH所成角的正弦值.

說明:本小題主要考查空間中的線面關(guān)系,面面關(guān)系,解三角形等基礎(chǔ)知識,考查空間想象能力與邏輯思維能力。滿分12分.

查看答案和解析>>

如圖,在四棱錐P-ABCD中,底面ABCD是矩形,,BC=1,,PD=CD=2.

(I)求異面直線PA與BC所成角的正切值;

(II)證明平面PDC⊥平面ABCD;

(III)求直線PB與平面ABCD所成角的正弦值。

【考點(diǎn)定位】本小題主要考查異面直線所成的角、平面與平面垂直、直線與平面所成的角等基礎(chǔ)知識.,考查空間想象能力、運(yùn)算求解能力和推理論證能力.

 

查看答案和解析>>

已知橢圓(a>b>0),點(diǎn)在橢圓上。

(I)求橢圓的離心率。

(II)設(shè)A為橢圓的右頂點(diǎn),O為坐標(biāo)原點(diǎn),若Q在橢圓上且滿足|AQ|=|AO|,求直線OQ的斜率的值。

【考點(diǎn)定位】本小題主要考查橢圓的標(biāo)準(zhǔn)方程和幾何性質(zhì)、直線的方程、平面內(nèi)兩點(diǎn)間距離公式等基礎(chǔ)知識. 考查用代數(shù)方法研究圓錐曲線的性質(zhì),以及數(shù)形結(jié)合的數(shù)學(xué)思想方法.考查運(yùn)算求解能力、綜合分析和解決問題的能力.

 

查看答案和解析>>

(本小題滿分12分)

有編號為,,…的10個(gè)零件,測量其直徑(單位:cm),得到下面數(shù)據(jù):


其中直徑在區(qū)間[1.48,1.52]內(nèi)的零件為一等品。

(Ⅰ)從上述10個(gè)零件中,隨機(jī)抽取一個(gè),求這個(gè)零件為一等品的概率;

(Ⅱ)從一等品零件中,隨機(jī)抽取2個(gè).

     (。┯昧慵木幪柫谐鏊锌赡艿某槿〗Y(jié)果;

     (ⅱ)求這2個(gè)零件直徑相等的概率。本小題主要考查用列舉法計(jì)算隨機(jī)事件所含的基本事件數(shù)及事件發(fā)生的概率等基礎(chǔ)知識,考查數(shù)據(jù)處理能力及運(yùn)用概率知識解決簡單的實(shí)際問題的能力。滿分12分

【解析】(Ⅰ)解:由所給數(shù)據(jù)可知,一等品零件共有6個(gè).設(shè)“從10個(gè)零件中,隨機(jī)抽取一個(gè)為一等品”為事件A,則P(A)==.

      (Ⅱ)(i)解:一等品零件的編號為.從這6個(gè)一等品零件中隨機(jī)抽取2個(gè),所有可能的結(jié)果有:,,,

,,,共有15種.

      (ii)解:“從一等品零件中,隨機(jī)抽取的2個(gè)零件直徑相等”(記為事件B)的所有可能結(jié)果有:,,共有6種.

      所以P(B)=.

(本小題滿分12分)

如圖,在五面體ABCDEF中,四邊形ADEF是正方形,F(xiàn)A⊥平面ABCD,BC∥AD,CD=1,AD=,∠BAD=∠CDA=45°.

(Ⅰ)求異面直線CE與AF所成角的余弦值;      

(Ⅱ)證明CD⊥平面ABF;

查看答案和解析>>


同步練習(xí)冊答案