20.(1)當(dāng)時(shí).則.當(dāng)時(shí).則, 故.所以當(dāng)時(shí).總有. --------------4分 (2)①當(dāng)時(shí)..故滿(mǎn)足題意的N*. 同理可得.當(dāng)或4時(shí).滿(mǎn)足題意的N*. 當(dāng)或6時(shí).滿(mǎn)足題意的N*. ②當(dāng)時(shí)..故滿(mǎn)足題意的k不存在. ③當(dāng)時(shí).由(1)知.滿(mǎn)足題意的k不存在. 綜上得:當(dāng)時(shí).滿(mǎn)足題意的N*, 當(dāng)時(shí).滿(mǎn)足題意的N*. ---------------10分 (3)由mN*.可得.故, 當(dāng)時(shí).. 故且.又. 所以. 故 =4 =4 =. ---------------16分 附加試題 查看更多

 

題目列表(包括答案和解析)

已知,函數(shù)

(1)當(dāng)時(shí),求函數(shù)在點(diǎn)(1,)的切線方程;

(2)求函數(shù)在[-1,1]的極值;

(3)若在上至少存在一個(gè)實(shí)數(shù)x0,使>g(xo)成立,求正實(shí)數(shù)的取值范圍。

【解析】本試題中導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。(1)中,那么當(dāng)時(shí),  又    所以函數(shù)在點(diǎn)(1,)的切線方程為;(2)中令   有 

對(duì)a分類(lèi)討論,和得到極值。(3)中,設(shè),依題意,只需那么可以解得。

解:(Ⅰ)∵  ∴

∴  當(dāng)時(shí),  又    

∴  函數(shù)在點(diǎn)(1,)的切線方程為 --------4分

(Ⅱ)令   有 

①         當(dāng)時(shí)

(-1,0)

0

(0,

,1)

+

0

0

+

極大值

極小值

的極大值是,極小值是

②         當(dāng)時(shí),在(-1,0)上遞增,在(0,1)上遞減,則的極大值為,無(wú)極小值。 

綜上所述   時(shí),極大值為,無(wú)極小值

時(shí)  極大值是,極小值是        ----------8分

(Ⅲ)設(shè),

對(duì)求導(dǎo),得

,    

在區(qū)間上為增函數(shù),則

依題意,只需,即 

解得  (舍去)

則正實(shí)數(shù)的取值范圍是(,

 

查看答案和解析>>

已知m>1,直線,橢圓C:、分別為橢圓C的左、右焦點(diǎn).

(Ⅰ)當(dāng)直線過(guò)右焦點(diǎn)時(shí),求直線的方程;

(Ⅱ)設(shè)直線與橢圓C交于A、B兩點(diǎn),△A、△B的重心分別為G、H.若原點(diǎn)O在以線段GH為直徑的圓內(nèi),求實(shí)數(shù)m的取值范圍.[

【解析】第一問(wèn)中因?yàn)橹本€經(jīng)過(guò)點(diǎn),0),所以,得.又因?yàn)閙>1,所以,故直線的方程為

第二問(wèn)中設(shè),由,消去x,得,

則由,知<8,且有

由題意知O為的中點(diǎn).由可知從而,設(shè)M是GH的中點(diǎn),則M().

由題意可知,2|MO|<|GH|,得到范圍

 

查看答案和解析>>

求證:在△ABC中,若∠C是直角,則∠B一定是銳角.

證明:假設(shè)___________,則∠B是直角或鈍角.

(1)當(dāng)∠B是直角時(shí),因?yàn)椤螩是直角,所以∠B+∠C=180°,與三角形的內(nèi)角和定理矛盾.

(2)當(dāng)∠B為鈍角時(shí),∠B+∠C>180°,同理矛盾.故___________,原命題成立.

查看答案和解析>>

已知是等差數(shù)列,其前n項(xiàng)和為Sn,是等比數(shù)列,且.

(Ⅰ)求數(shù)列的通項(xiàng)公式;

(Ⅱ)記,證明).

【解析】(1)設(shè)等差數(shù)列的公差為d,等比數(shù)列的公比為q.

,得,.

由條件,得方程組,解得

所以,.

(2)證明:(方法一)

由(1)得

     ①

   ②

由②-①得

,

(方法二:數(shù)學(xué)歸納法)

①  當(dāng)n=1時(shí),,,故等式成立.

②  假設(shè)當(dāng)n=k時(shí)等式成立,即,則當(dāng)n=k+1時(shí),有:

   

   

,因此n=k+1時(shí)等式也成立

由①和②,可知對(duì)任意,成立.

 

查看答案和解析>>

設(shè)點(diǎn)是拋物線的焦點(diǎn),是拋物線上的個(gè)不同的點(diǎn)().

(1) 當(dāng)時(shí),試寫(xiě)出拋物線上的三個(gè)定點(diǎn)、的坐標(biāo),從而使得

(2)當(dāng)時(shí),若

求證:;

(3) 當(dāng)時(shí),某同學(xué)對(duì)(2)的逆命題,即:

“若,則.”

開(kāi)展了研究并發(fā)現(xiàn)其為假命題.

請(qǐng)你就此從以下三個(gè)研究方向中任選一個(gè)開(kāi)展研究:

① 試構(gòu)造一個(gè)說(shuō)明該逆命題確實(shí)是假命題的反例(本研究方向最高得4分);

② 對(duì)任意給定的大于3的正整數(shù),試構(gòu)造該假命題反例的一般形式,并說(shuō)明你的理由(本研究方向最高得8分);

③ 如果補(bǔ)充一個(gè)條件后能使該逆命題為真,請(qǐng)寫(xiě)出你認(rèn)為需要補(bǔ)充的一個(gè)條件,并說(shuō)明加上該條件后,能使該逆命題為真命題的理由(本研究方向最高得10分).

【評(píng)分說(shuō)明】本小題若填空不止一個(gè)研究方向,則以實(shí)得分最高的一個(gè)研究方向的得分作為本小題的最終得分.

【解析】第一問(wèn)利用拋物線的焦點(diǎn)為,設(shè),

分別過(guò)作拋物線的準(zhǔn)線的垂線,垂足分別為.

由拋物線定義得到

第二問(wèn)設(shè),分別過(guò)作拋物線的準(zhǔn)線垂線,垂足分別為.

由拋物線定義得

第三問(wèn)中①取時(shí),拋物線的焦點(diǎn)為,

設(shè)分別過(guò)作拋物線的準(zhǔn)線垂線,垂足分別為.由拋物線定義得

,

,不妨取;;;

解:(1)拋物線的焦點(diǎn)為,設(shè)

分別過(guò)作拋物線的準(zhǔn)線的垂線,垂足分別為.由拋物線定義得

 

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912360984321474/SYS201207091236478588145986_ST.files/image010.png">,所以,

故可取滿(mǎn)足條件.

(2)設(shè),分別過(guò)作拋物線的準(zhǔn)線垂線,垂足分別為.

由拋物線定義得

   又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912360984321474/SYS201207091236478588145986_ST.files/image017.png">

;

所以.

(3) ①取時(shí),拋物線的焦點(diǎn)為,

設(shè)分別過(guò)作拋物線的準(zhǔn)線垂線,垂足分別為.由拋物線定義得

,

,不妨取;;;,

.

,,是一個(gè)當(dāng)時(shí),該逆命題的一個(gè)反例.(反例不唯一)

② 設(shè),分別過(guò)

拋物線的準(zhǔn)線的垂線,垂足分別為,

及拋物線的定義得

,即.

因?yàn)樯鲜霰磉_(dá)式與點(diǎn)的縱坐標(biāo)無(wú)關(guān),所以只要將這點(diǎn)都取在軸的上方,則它們的縱坐標(biāo)都大于零,則

,

,所以.

(說(shuō)明:本質(zhì)上只需構(gòu)造滿(mǎn)足條件且的一組個(gè)不同的點(diǎn),均為反例.)

③ 補(bǔ)充條件1:“點(diǎn)的縱坐標(biāo))滿(mǎn)足 ”,即:

“當(dāng)時(shí),若,且點(diǎn)的縱坐標(biāo))滿(mǎn)足,則”.此命題為真.事實(shí)上,設(shè),

分別過(guò)作拋物線準(zhǔn)線的垂線,垂足分別為,由,

及拋物線的定義得,即,則

,

又由,所以,故命題為真.

補(bǔ)充條件2:“點(diǎn)與點(diǎn)為偶數(shù),關(guān)于軸對(duì)稱(chēng)”,即:

“當(dāng)時(shí),若,且點(diǎn)與點(diǎn)為偶數(shù),關(guān)于軸對(duì)稱(chēng),則”.此命題為真.(證略)

 

查看答案和解析>>


同步練習(xí)冊(cè)答案