查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)二次函數(shù)的圖象經(jīng)過三點(diǎn).

(1)求函數(shù)的解析式(2)求函數(shù)在區(qū)間上的最大值和最小值

查看答案和解析>>

(本小題滿分12分)已知等比數(shù)列{an}中, 

   (Ⅰ)求數(shù)列{an}的通項(xiàng)公式an;

   (Ⅱ)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,證明:

   (Ⅲ)設(shè),證明:對(duì)任意的正整數(shù)n、m,均有

查看答案和解析>>

(本小題滿分12分)已知函數(shù),其中a為常數(shù).

   (Ⅰ)若當(dāng)恒成立,求a的取值范圍;

   (Ⅱ)求的單調(diào)區(qū)間.

查看答案和解析>>

(本小題滿分12分)

甲、乙兩籃球運(yùn)動(dòng)員進(jìn)行定點(diǎn)投籃,每人各投4個(gè)球,甲投籃命中的概率為,乙投籃命中的概率為

   (Ⅰ)求甲至多命中2個(gè)且乙至少命中2個(gè)的概率;

   (Ⅱ)若規(guī)定每投籃一次命中得3分,未命中得-1分,求乙所得分?jǐn)?shù)η的概率分布和數(shù)學(xué)期望.

查看答案和解析>>

(本小題滿分12分)已知是橢圓的兩個(gè)焦點(diǎn),O為坐標(biāo)原點(diǎn),點(diǎn)在橢圓上,且,圓O是以為直徑的圓,直線與圓O相切,并且與橢圓交于不同的兩點(diǎn)A、B.

   (1)求橢圓的標(biāo)準(zhǔn)方程;w.w.w.k.s.5.u.c.o.m        

   (2)當(dāng)時(shí),求弦長|AB|的取值范圍.

查看答案和解析>>

一.選擇題(每小題5分,共60分)

題號(hào)

1

2

3

4

5

6

7

8

9

10

11

12

答案

B

C

B

D

D

B

D

A

C

C

A

A

二.填空題(每小題4分,共16分)

13.     14.    15.     16.  -  

三、解答題:(本大題共6個(gè)小題,共74分.解答應(yīng)寫出文字說明,證明過程或演算步驟).

17、(本小題滿分12分)

解:由得:

(3分)

因?yàn)?sub>所以   所以  (6分)

由正弦定理得.      (8分)  從而由余弦定理及得:

    (12分)

18、(本小題滿分12分)

解:(1)∵這支籃球隊(duì)與其他各隊(duì)比賽勝場的事件是相互獨(dú)立的,

∴首次勝場前已負(fù)了兩場的概率P=(1-)×(1-=.   4分

(2)設(shè)A表示這支籃球隊(duì)在6場比賽中恰好勝了3場的事件,則P(A)就是6次獨(dú)立重復(fù)試驗(yàn)中恰好發(fā)生3次的概率.∴P(A)=P6(3)=C()3(1-)3=.     8分

(3)設(shè)ξ表示這支籃球隊(duì)在6場比賽中勝場數(shù),則ξB(6,).

=6××(1-)=,Eξ=6×=2.

故這支籃球隊(duì)在6場比賽中勝場數(shù)的期望是2,方差是.     12分

19、(本小題滿分12分)

解: (4分)

,

  ( 6分)

當(dāng)時(shí),當(dāng)時(shí),,(9分)

當(dāng)時(shí),

當(dāng)時(shí), (11分)

綜上,

文本框: 圖2

所以,為等差數(shù)列.(12分)

20.(本題?分12分)

解 (1)如圖2,將已知條件實(shí)現(xiàn)在長方體中,則直線與平面所成的角為,ks5u直線與平面所成角的為.在直角中,有,故=;在直角中,有,

=.               6分

(2)如圖2,作

               

設(shè)二面角的平面角為,則             

得:.                   12分

21、(本小題滿分12分)

解:因?yàn)榫段的兩端點(diǎn)在拋物線上,故可設(shè),設(shè)線段的中點(diǎn),則            7分

,

所以:                              11分

所以,線段的中點(diǎn)的軌跡方程為.    12分

22、(本小題滿分14分)

(1)解:f′(x)=3x2-6ax+b,

過P1(x1,y1)的切線方程是y-y1=f′(x1)(x-x1)(x1≠0).

又原點(diǎn)在直線上,所以-(x13-3ax12+bx1)=(-x1)(3x12-6ax1+b),

解得x1=.       4分

(2)解:過Pn(xn,yn)的切線方程是y-yn=f′(xn)(x-xn).

又Pn+1 (xn+1,yn+1)在直線上,

所以(xn+1-xn)2(xn+1+2xn3a)=0.由xn≠xn+1,

解得xn+1+2xn3a=0.        10分

(3)證明:由(2)得xn+1-a=-2(xn-a),

所以數(shù)列{xn-a}是首項(xiàng)為x1-a=,公比為-2的等比數(shù)列.

∴xn=a+?(-2)n-1,

即xn=[1-(-2)n-2]a.

當(dāng)n為正偶數(shù)時(shí),xn<a;當(dāng)n為正奇數(shù)時(shí), xn>a.     14分

 

 

 

 


同步練習(xí)冊答案