已知函數(shù).給出下列結(jié)論: ① 的定義域?yàn)? ② 的值域?yàn)? ③ 是周期函數(shù).最小正周期為, ④ 的圖像關(guān)于直線對稱, ⑤ 將的圖像按向量平移得到的圖像.則為奇函數(shù). 其中正確的結(jié)論是 .(將你認(rèn)為正確的結(jié)論序號都寫上) 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)數(shù)學(xué)公式,給出下列結(jié)論:
①f(x)的定義域?yàn)?img class='latex' alt='數(shù)學(xué)公式' src='http://thumb.1010pic.com/pic5/latex/199172.png' />;
②f(x)的值域?yàn)閇-1,1];
③f(x)是周期函數(shù),最小正周期為2π;
④f(x)的圖象關(guān)于直線數(shù)學(xué)公式對稱;
⑤將f(x)的圖象向右平移數(shù)學(xué)公式個(gè)單位得到g(x)的圖象,則g(x)為奇函數(shù).
其中正確的結(jié)論是________.

查看答案和解析>>

已知函數(shù)f(x)=
1+sin2x
sinx+cosx
,給出下列結(jié)論:
①f(x)的定義域?yàn)?span id="3zvpxtt" class="MathJye">{x|x≠2kπ-
π
4
,k∈Z};
②f(x)的值域?yàn)閇-1,1];
③f(x)是周期函數(shù),最小正周期為2π;
④f(x)的圖象關(guān)于直線x=
π
4
對稱;
⑤將f(x)的圖象向右平移
π
2
個(gè)單位得到g(x)的圖象,則g(x)為奇函數(shù).
其中正確的結(jié)論是
③④
③④

查看答案和解析>>

已知函數(shù)f(x)=lg(x2+ax-a-1)(a∈R),給出下列命題:
①a=1時(shí),f(x)的定義域?yàn)椋?∞,-2)∪(1,+∞);
②f(x)有最小值;
③當(dāng)a=0時(shí),f(x)的值域?yàn)镽;
④若f(x)在區(qū)間[2,+∞)上是增函數(shù),則實(shí)數(shù)a的取值范圍是[-4,+∞).
其中正確結(jié)論的序號是
①③
①③
.(填上所有正確命題的序號)

查看答案和解析>>

已知函數(shù)f(x)=
1+sin2x
sinx+cosx
,給出下列結(jié)論:
①f(x)的定義域?yàn)?span id="hbvnfxb" class="MathJye">{x|x∈R且x≠2kπ-
π
4
,k∈Z};
②f(x)的值域?yàn)閇-1,1];
③f(x)是周期函數(shù),最小正周期為2π;
④f(x)的圖象關(guān)于直線對稱;
⑤將f(x)的圖象按向量
a
=(
π
2
,0)
平移得到g(x)的圖象,則g(x)為奇函數(shù).
其中,正確的結(jié)論是
③④
③④
(將你認(rèn)為正確的結(jié)論序號都寫出)

查看答案和解析>>

已知函數(shù)y=f(x)是定義域?yàn)镽的偶函數(shù),且對x∈R,恒有f(1+x)=f(1-x).又當(dāng)x∈[0,1]時(shí),f(x)=x.
(1)當(dāng)x∈[-1,0]時(shí),求f(x)的解析式;
(2)求證:函數(shù)y=f(x)(x∈R)是以T=2為周期的周期函數(shù);
(3)解答本小題考生只需從下列三個(gè)問題中選擇一個(gè)寫出結(jié)論即可(無需寫解題步驟).注意:考生若選擇多于一個(gè)問題解答,則按分?jǐn)?shù)最低一個(gè)問題的解答正確與否給分.
①當(dāng)x∈[2n-1,2n](n∈Z)時(shí),求f(x)的解析式.
②當(dāng)x∈[2n-1,2n+1](其中n是給定的正整數(shù))時(shí),若函數(shù)y=f(x)的圖象與函數(shù)y=kx的圖象有且僅有兩個(gè)公共點(diǎn),求實(shí)數(shù)k的取值范圍.
③當(dāng)x∈[0,2n](n是給定的正整數(shù)且n≥3)時(shí),求f(x)的解析式.

查看答案和解析>>


同步練習(xí)冊答案