已知關(guān)于x的二次函數(shù)f(x)=x2+(2t-1)x+1-2t. (1)求證:對(duì)于任意t∈R.方程f(x)=1必有實(shí)數(shù)根, (2)若<t<.求證:方程f(x)=0在區(qū)間內(nèi)各有一個(gè)實(shí)數(shù)根. 解:(1)證明:由f(1)=1知f(x)=1必有實(shí)數(shù)根. (2)當(dāng)<t<時(shí).因?yàn)閒(-1)=3-4t=4(-t)>0. f(0)=1-2t=2(-t)<0. f()=+(2t-1)+1-2t=-t>0. 所以方程f(x)=0在區(qū)間內(nèi)各有一個(gè)實(shí)數(shù)根. 查看更多

 

題目列表(包括答案和解析)

已知關(guān)于x的二次函數(shù)f(x)=ax2-4bx+1
(Ⅰ)設(shè)集合P={1,2,3},集合Q={-1,1,2,3,4},從集合P中隨機(jī)取一個(gè)數(shù)作為a,從集合Q中隨機(jī)取一個(gè)數(shù)作為b,求函數(shù)f(x)在區(qū)間[1,+∞)上是增函數(shù)的概率;
(Ⅱ)設(shè)點(diǎn)(a,b)是區(qū)域
x+y-8≤0
x>0
y>0
內(nèi)的隨機(jī)點(diǎn),求函數(shù)f(x)在區(qū)間[1,+∞)上是增函數(shù)的概率.

查看答案和解析>>

已知關(guān)于x的二次函數(shù)f(x)=x2+(2t-1)x+1-2t.
(1)求證:對(duì)于任意t∈R,方程f(x)=1必有實(shí)數(shù)根;
(2)若方程f(x)=0在區(qū)間(-1,2)上有兩個(gè)實(shí)數(shù)根,求t的范圍.

查看答案和解析>>

已知關(guān)于x的二次函數(shù)f(x)=ax2-2bx-1,(其中常數(shù)a、b∈R),滿足
a+b-6≤0
a>0
b>0
,則函數(shù)y=f(x)在區(qū)間[2,+∞)上是增函數(shù)的概率是( �。�
A、
1
4
B、
1
3
C、
1
2
D、
2
3

查看答案和解析>>

已知關(guān)于x的二次函數(shù)f(x)=ax2-8bx+1.
(1)設(shè)集合M={1,2,3}和N={-1,1,2,3,4,5},從集合M中隨機(jī)取一個(gè)數(shù)作為a,從N中隨機(jī)取一個(gè)數(shù)作為b,求函數(shù)y=f(x)在區(qū)間[2,+∞)上是增函數(shù)的概率;
(2)設(shè)點(diǎn)(a,b)是區(qū)域
x+y-6≤0
x>0
y>0
內(nèi)的隨機(jī)點(diǎn),求函數(shù)y=f(x)在區(qū)間[2,+∞)上是增函數(shù)的概率.

查看答案和解析>>

精英家教網(wǎng)已知關(guān)于x的二次函數(shù)f(x)=x2+ax-b(a,b∈R).
(Ⅰ)當(dāng)b=-2時(shí),由于對(duì)任意的x∈R,函數(shù)f(x)的值總大于零,求實(shí)數(shù)a的取值范圍;
(Ⅱ)如果方程f(x)=0有一個(gè)負(fù)根和一個(gè)不大于1的正根,求實(shí)數(shù)a,b滿足的條件,并在右圖所給坐標(biāo)系中畫出點(diǎn)(a,b)所在的平面區(qū)域;
(Ⅲ)在第(Ⅱ)問(wèn)的條件下,若實(shí)數(shù)k滿足b=k(a+1)+3,求k的取值范圍.

查看答案和解析>>


同步練習(xí)冊(cè)答案