1.求拋物線方程的方法:待定系數(shù)法,定義法,直接法; 查看更多

 

題目列表(包括答案和解析)

(2007•浦東新區(qū)二模)已知拋物線C:y2=2px(p>0)上橫坐標(biāo)為4的點(diǎn)到焦點(diǎn)的距離為5.
(1)求拋物線C的方程.
(2)設(shè)直線y=kx+b(k≠0)與拋物線C交于兩點(diǎn)A(x1,y1),B(x2,y2),且|y1-y2|=a(a>0),M是弦AB的中點(diǎn),過M作平行于x軸的直線交拋物線C于點(diǎn)D,得到△ABD;再分別過弦AD、BD的中點(diǎn)作平行于x軸的直線依次交拋物線C于點(diǎn)E,F(xiàn),得到△ADE和△BDF;按此方法繼續(xù)下去.
解決下列問題:
①求證:a2=
16(1-kb)k2
;
②計(jì)算△ABD的面積S△ABD;
③根據(jù)△ABD的面積S△ABD的計(jì)算結(jié)果,寫出△ADE,△BDF的面積;請?jiān)O(shè)計(jì)一種求拋物線C與線段AB所圍成封閉圖形面積的方法,并求出此封閉圖形的面積.

查看答案和解析>>

(本題滿分15分)已知直線過拋物線的焦點(diǎn).

(1)求拋物線方程;

(2)設(shè)拋物線的一條切線,若,求切點(diǎn)坐標(biāo).

(方法不唯一)

 

查看答案和解析>>

如圖,直線與拋物線交于兩點(diǎn),與軸相交于點(diǎn),且.

(1)求證:點(diǎn)的坐標(biāo)為;

(2)求證:;

(3)求的面積的最小值.

【解析】設(shè)出點(diǎn)M的坐標(biāo),并把過點(diǎn)M的方程設(shè)出來.為避免對斜率不存在的情況進(jìn)行討論,可以設(shè)其方程為,然后與拋物線方程聯(lián)立消x,根據(jù),即可建立關(guān)于的方程.求出的值.

(2)在第(1)問的基礎(chǔ)上,證明:即可.

(3)先建立面積S關(guān)于m的函數(shù)關(guān)系式,根據(jù)建立即可,然后再考慮利用函數(shù)求最值的方法求最值.

 

查看答案和解析>>

已知P(x0,y0)是拋物線y2=2px(p>0)上的一點(diǎn),過P點(diǎn)的切線方程的斜率可通過如下方式求得:
在y2=2px兩邊同時(shí)對x求導(dǎo),得:2yy′=2p,則y′=
p
y
,所以過P的切線的斜率:k=
p
y0
試用上述方法求出雙曲線x2-
y2
2
=1
P(
2
,
2
)
處的切線方程為
 

查看答案和解析>>

(2012•奉賢區(qū)二模)平面內(nèi)一動點(diǎn)P(x,y)到兩定點(diǎn)F1(-1,0),F(xiàn)2(1,0)的距離之積等于1.
(1)求動點(diǎn)P(x,y)的軌跡C方程,用y2=f(x)形式表示;
(2)類似高二第二學(xué)期教材(12.4橢圓的性質(zhì)、12.6雙曲線的性質(zhì)、12.8拋物線的性質(zhì))中研究曲線的方法請你研究軌跡C的性質(zhì),請直接寫出答案;
(3)求△PF1F2周長的取值范圍.

查看答案和解析>>


同步練習(xí)冊答案