例1 對(duì)于任意實(shí)數(shù)m.等式 解: 例2 關(guān)于x的代數(shù)式.當(dāng)x分別取1,2,-1時(shí).y的值分別是4.7.10.求a,b,c的值. 解:根據(jù)題意.得 例3 已知都是關(guān)于x,y的某個(gè)二元一次方程的解.求這個(gè)二元一次方程. 解:設(shè)這個(gè)二元一次方程為 例4 已知等式 解:由已知條件得 比較對(duì)應(yīng)項(xiàng)的系數(shù).得 查看更多

 

題目列表(包括答案和解析)

反比例函數(shù)中系數(shù)k的幾何意義

  反比例函數(shù)y=(k≠0)任取一點(diǎn)M(a,b),過M作MA⊥x軸,MB⊥y軸,所得矩形OAMB的面積為S=MA·MB=|b|·|a|=|ab|.又因?yàn)閎=,故ab=k,所以S=|k|(如圖(1)).

  這就是說,過雙曲線上任意一點(diǎn)作x軸、y軸的垂線,所得的矩形面積為|k|.這就是k的幾何意義,會(huì)給解題帶來方便.現(xiàn)舉例如下:

  例1:如(2)圖,已知點(diǎn)P1(x1,y1)和P2(x2,y2)都在反比例函數(shù)y=(k<0)的圖像上,試比較矩形P1AOB與矩形P2COD的面積大�。�

  解答:=|k|

  =|k|

  故

  例2:如圖(3),在y=(x>0)的圖像上有三點(diǎn)A、B、C,經(jīng)過三點(diǎn)分別向x軸引垂線,交x軸于A1、B1、C1三點(diǎn),連結(jié)OA、OB、OC,記△OAA1、△OBB1、△OCC1的面積分別為S1、S2、S3,則有(  )

  A.S1=S2=S3

  B.S1<S2<S3

  C.S3<S1<S2

  D.S1>S2>S3

  解答:∵|k|=

  |k|=

  |k|=

  S1=S2=S3,故選A.

  例3:一個(gè)反比例函數(shù)在第三象限的圖像如圖(4)所示,若A是圖像任意一點(diǎn),AM⊥x軸,垂足為M,O是原點(diǎn),如果△AOM的面積是3,那么這個(gè)反比例函數(shù)的解析式是________.

  解答:∵S△AOM|k|

  又S△AOM=3,

  ∴|k|=3,|k|=6

  ∴k=±6

  又∵曲線在第三象限

  ∴k>0∴k=6

  ∴所以反比例函數(shù)的解析式為y=

  根據(jù)是述意義,請(qǐng)你解答下題:

  如圖(5),過反比例函數(shù)y=(x>0)的圖像上任意兩點(diǎn)A、B分別作軸和垂線,垂足分別為C、D,連結(jié)OA、OB,設(shè)AC與OB的交點(diǎn)為E,△AOE與梯形ECDB的面積分別為S1、S2,比較它們的大小,可得

[  ]

A.S1>S2

B.S1=S2

C.S1<S2

D.大小關(guān)系不能確定

查看答案和解析>>

用“拆項(xiàng)法”解分式方程

  大家知道,解分式方程的基本方法是,把方程的兩邊同乘以各分母的最簡(jiǎn)公分母,化為整式方程來解,而對(duì)于一些特殊的分式方程來說,采用上述方法往往越解越繁.下面我們介紹一種簡(jiǎn)捷、明快的方法--拆項(xiàng)法.

  例:解方程

  解:先降低方程中各分式分子的次數(shù),將原方程變形為

  即(4+)-(7+)=(1-)-(4-)

  整理得

  兩邊各自通分得

  

  ∴(x-2)(x-1)=(x-7)(x-6)

  即x2-3x+2=x2-13x+42

  也即10x=40  ∴x=4

  經(jīng)檢驗(yàn)知,x=4是原方程的根.

請(qǐng)你運(yùn)用上述方法,解分式方程

查看答案和解析>>

對(duì)于命題如果∠1+∠2=,那么∠1≠∠2,能說明它是假命題的例子(反例)是

[  ]

A.∠1=,∠2=

B.∠1=,∠2=

C.∠1=∠2=

D.∠1=,∠2=

查看答案和解析>>

18、下列說法正確的個(gè)數(shù)有( �。�
(1)對(duì)于任意銳角α,都有0<sinα<1和0<cosα<1
(2)對(duì)于任意銳角α1,α2,如果α1<α2,那么cosα1<cosα2
(3)如果sinα1<sinα2,那么銳角α1<銳角α2
(4)如果cotα1<cotα2,那么銳角α1>銳角α2

查看答案和解析>>

7、對(duì)假命題舉反例時(shí),應(yīng)注意使反例( �。�

查看答案和解析>>


同步練習(xí)冊(cè)答案