2.利用導數(shù)判別可導函數(shù)的極值的方法及求一些實際問題的最大值與最小值. 復合函數(shù)的求導法則是微積分中的重點與難點內(nèi)容.課本中先通過實例.引出復合函數(shù)的求導法則.接下來對法則進行了證明. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)

已知函數(shù);

(1)求;         (2)求的最大值與最小值.

【解析】第一問利用導數(shù)的運算法則,冪函數(shù)的導數(shù)公式,可得。

第二問中,利用第一問的導數(shù),令導數(shù)為零,得到

然后結(jié)合導數(shù),函數(shù)的關(guān)系判定函數(shù)的單調(diào)性,求解最值即可。

 

查看答案和解析>>

下列說法正確的有( �。﹤€.
①已知函數(shù)f(x)在(a,b)內(nèi)可導,若f(x)在(a,b)內(nèi)單調(diào)遞增,則對任意的?x∈(a,b),有f′(x)>0.
②函數(shù)f(x)圖象在點P處的切線存在,則函數(shù)f(x)在點P處的導數(shù)存在;反之若函數(shù)f(x)在點P處的導數(shù)存在,則函數(shù)f(x)圖象在點P處的切線存在.
③因為3>2,所以3+i>2+i,其中i為虛數(shù)單位.
④定積分定義可以分為:分割、近似代替、求和、取極限四步,對求和In=
n
i=1
f(ξi)△x
中ξi的選取是任意的,且In僅于n有關(guān).
⑤已知2i-3是方程2x2+px+q=0的一個根,則實數(shù)p,q的值分別是12,26.

查看答案和解析>>

設M是由滿足下列條件的函數(shù)f(X)構(gòu)成的集合:

①方程有實數(shù)根;

②函數(shù)的導數(shù) (滿足

(I )若函數(shù)為集合M中的任一元素,試證明萬程只有一個實根

(II)    判斷函^是否是集合M中的元素,并說明理由;

(III)   “對于(II)中函數(shù)定義域內(nèi)的任一區(qū)間,都存在,使得”,請利用函數(shù)的圖象說明這一結(jié)論.

 

查看答案和解析>>

記函數(shù)的導數(shù)為的導數(shù)為的導數(shù)為。若可進行n次求導,則均可近似表示為:

若取n=4,根據(jù)這個結(jié)論,則可近似估計自然對數(shù)的底數(shù)      (用分數(shù)表示)

 

查看答案和解析>>

記函數(shù)的導數(shù)為,的導數(shù)為的導數(shù)為。若可進行次求導,則均可近似表示為:

若取,根據(jù)這個結(jié)論,則可近似估計自然對數(shù)的底數(shù)_____(用分數(shù)表示).

查看答案和解析>>


同步練習冊答案