復(fù)習(xí)兩角和與差的正弦.余弦.正切公式: 查看更多

 

題目列表(包括答案和解析)

閱讀下面材料:
根據(jù)兩角和與差的正弦公式,有:
sin(α+β)=sinαcosβ+cosαsinβ…①
sin(α-β)=sinαcosβ-cosαsinβ…②
由①+②得sin(α+β)+sin(α-β)=2sinαcosβ…③
令α+β=A,α-β=B有α=
A+B
2
,β=
A-B
2

代入③得sinA+sinB=2sin
A+B
2
cos
A-B
2

(Ⅰ)類(lèi)比上述推理方法,根據(jù)兩角和與差的余弦公式,證明:cosA-cosB=-2sin
A+B
2
sin
A-B
2
;
(Ⅱ)若△ABC的三個(gè)內(nèi)角A,B,C滿(mǎn)足cos2A-cos2B=1-cos2C,試判斷△ABC的形狀.(提示:如果需要,也可以直接利用閱讀材料及(Ⅰ)中的結(jié)論)

查看答案和解析>>

類(lèi)比有關(guān)“兩角和與差的正弦、余弦公式”的形式,對(duì)給定的兩個(gè)函數(shù)S(x)=
ax-a-x
2
,C(x)=
ax+a-x
2
其中a>0,且a≠1,請(qǐng)寫(xiě)出一個(gè)關(guān)于S(x)和C(x)的運(yùn)算公式:
S(x+y)=S(x)C(y)+S(y)C(x),或S(x-y)=S(x)C(y)-S(y)C(x)等
S(x+y)=S(x)C(y)+S(y)C(x),或S(x-y)=S(x)C(y)-S(y)C(x)等

查看答案和解析>>

(2012•福建模擬)閱讀下面材料:
根據(jù)兩角和與差的正弦公式,有sin(α+β)=sinαcosβ+cosαsinβ------①
sin(α-β)=sinαcosβ-cosαsinβ------②
由①+②得sin(α+β)+sin(α-β)=2sinαcosβ------③
令α+β=A,α-β=B有α=
A+B
2
,β=
A-B
2

代入③得 sinA+sinB=2sin
A+B
2
cos
A-B
2

(Ⅰ)類(lèi)比上述推證方法,根據(jù)兩角和與差的余弦公式,證明:cosA-cosB=-2sin
A+B
2
sin
A-B
2
;
(Ⅱ)若△ABC的三個(gè)內(nèi)角A,B,C滿(mǎn)足cos2A-cos2B=2sin2C,試判斷△ABC的形狀.
(提示:如果需要,也可以直接利用閱讀材料及(Ⅰ)中的結(jié)論)

查看答案和解析>>

類(lèi)比“兩角和與差的正弦、余弦公式”的形式,對(duì)于給定的兩個(gè)函數(shù)S(x)=
ex-e-x
2
C(x)=
ex+e-x
2
,試寫(xiě)出一個(gè)正確的運(yùn)算公式為
 

查看答案和解析>>

閱讀下面材料:
根據(jù)兩角和與差的正弦公式,有
sin(α+β)=sinαcosβ+cosαsinβ------①
sin(α-β)=sinαcosβ-cosαsinβ------②
由①+②得sin(α+β)+sin(α-β)=2sinαcosβ------③
α+β=A,α-β=B 有α=
A+B
2
,β=
A-B
2

代入③得 sinA+cosB=2sin
A+B
2
cos
A-B
2

(1)類(lèi)比上述推理方法,根據(jù)兩角和與差的余弦公式,證明:cosA-cosB=-2sin
A+B
2
sin
A-B
2

(2)若△ABC的三個(gè)內(nèi)角A,B,C滿(mǎn)足cos2A+cox2C-cos2B=1,直接利用閱讀材料及(1)中的結(jié)論試判斷△ABC的形狀.

查看答案和解析>>


同步練習(xí)冊(cè)答案