43.我國古代某一時(shí)期是中國古代“花鳥寫生 的高峰期.這一時(shí)期出現(xiàn)了世界上最早的紙幣.瓷器工藝日臻完美.五大官窯馳名天下.這一時(shí)期應(yīng)是( ) A.東漢 B.北宋 C.明朝 D.唐朝 查看更多

 

題目列表(包括答案和解析)

“天宮一號(hào)”的順利升空標(biāo)志著我國火箭運(yùn)載的技術(shù)日趨完善.據(jù)悉,擔(dān)任“天宮 一號(hào)”發(fā)射任務(wù)的是長(zhǎng)征二號(hào)FT1火箭.為了確保發(fā)射萬無一失,科學(xué)家對(duì)長(zhǎng)征二號(hào)FT1運(yùn)載火箭進(jìn)行了 170余項(xiàng)技術(shù)狀態(tài)更改,增加了某項(xiàng)新技術(shù). 該項(xiàng)新技術(shù)要進(jìn)入試用階段 必須 對(duì)其 中 四項(xiàng)不同指標(biāo)甲、乙、丙、丁進(jìn)行通過量化檢測(cè).  假設(shè)該項(xiàng)新技術(shù)的指標(biāo) 甲、 乙、丙、丁獨(dú)立通過檢測(cè)合格的概率分別為,指標(biāo)甲、乙、丙、丁被檢測(cè)合格分別記4分、3分、2分、1分,若某項(xiàng)指標(biāo)不合格,則該項(xiàng)指標(biāo)記0分,各項(xiàng)指標(biāo)檢測(cè)結(jié)果互不影響.

(I )求該項(xiàng)新技術(shù)量化得分為6分的概率;

(II)求該項(xiàng)新技術(shù)的四個(gè)指標(biāo)中恰有三個(gè)指標(biāo)被檢測(cè)合格化得分不低于7分的概率

 

查看答案和解析>>

某辦公室有5位教師,只有3臺(tái)電腦供他們使用,教師是否使用電腦是相互獨(dú)立的.
(1)若上午某一時(shí)段A、B、C三位教師需要使用電腦的概率分別是
1
4
、
2
3
、
2
5
,求這一時(shí)段A、B、C三位教師中恰有2位教師使用電腦的概率;
(2)若下午某一時(shí)段每位教師需要使用電腦的概率都是
1
3
,求在這一時(shí)段該辦公室電腦使用的平均臺(tái)數(shù)和無法滿足需求的概率.

查看答案和解析>>

某校的學(xué)生記者團(tuán)由理科組和文科組構(gòu)成,具體數(shù)據(jù)如下表所示:
組別 理科 文科
性別 男生 女生 男生 女生
人數(shù) 5 4 3 2
學(xué)校準(zhǔn)備從中選出4人到社區(qū)舉行的大型公益活動(dòng)進(jìn)行采訪,每選出一名男生,給其所在小組記1分,每選出一名女生則給其所在小組記2分,若要求被選出的4人中理科組、文科組的學(xué)生都有.
(1)求理科組恰好記4分的概率?
(2)設(shè)文科男生被選出的人數(shù)為ξ,求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望Eξ.

查看答案和解析>>

(08年龍巖一中沖刺文)(12分)

某辦公室有5位教師,只有3臺(tái)電腦供他們使用,教師是否使用電腦是相互獨(dú)立的。

(1)若上午某一時(shí)段A、B、C三位教師需要使用電腦的概率分別是、、,求這一時(shí)段A、B、C三位教師中恰有2位教師使用電腦的概率;

(2)若下午某一時(shí)段每位教師需要使用電腦的概率都是,求這一時(shí)段該辦公室電腦數(shù)無法滿足需求的概率。

查看答案和解析>>

某校的學(xué)生記者團(tuán)由理科組和文科組構(gòu)成,具體數(shù)據(jù)如下表所示:

組別

理科

文科

性別

男生

女生

男生

女生

人數(shù)

4

4

3

1

學(xué)校準(zhǔn)備從中選出4人到社區(qū)舉行的大型公益活動(dòng)進(jìn)行采訪,每選出一名男生,給其所在小組記1分,每選出一名女生則給其所在小組記2分,若要求被選出的4人中理科組、文科組的學(xué)生都有.(Ⅰ)求理科組恰好記4分的概率?(4分)

(Ⅱ)設(shè)文科男生被選出的人數(shù)為,求隨機(jī)變量的分布列和數(shù)學(xué)期望.(8分)

 

查看答案和解析>>


同步練習(xí)冊(cè)答案