如圖1.已知ABCD是上.下底邊長分別為2和6.高為的等腰梯形.將它沿對稱軸OO1折成直二面角.如圖2. (Ⅰ)證明:AC⊥BO1, (Ⅱ)求二面角O-AC-O1的大小. 查看更多

 

題目列表(包括答案和解析)

h(x)=x+
m
x
,x∈[
1
4
,5]
,其中m是不等于零的常數(shù),
(1)(理)寫出h(4x)的定義域;
(文)m=1時,直接寫出h(x)的值域;
(2)(文、理)求h(x)的單調(diào)遞增區(qū)間;
(3)已知函數(shù)f(x)(x∈[a,b]),定義:f1(x)=minf(t)|a≤t≤x(x∈[a,b]),f2(x)=maxf(t)|a≤t≤x(x∈[a,b]).其中,minf(x)|x∈D表示函數(shù)f(x)在D上的最小值,maxf(x)|x∈D表示函數(shù)f(x)在D上的最大值.例如:f(x)=cosx,x∈[0,π],則f1(x)=cosx,x∈[0,π],f2(x)=1,x∈[0,π].
(理)當m=1時,設M(x)=
h(x)+h(4x)
2
+
|h(x)-h(4x)|
2
,不等式t≤M1(x)-M2(x)≤n恒成立,求t,n的取值范圍;
(文)當m=1時,|h1(x)-h2(x)|≤n恒成立,求n的取值范圍.

查看答案和解析>>

(文做理不做)正方體ABCD-A1B1C1D1中,p、q、r分別是AB、AD、B1C1的中點.那么正方體的過P、Q、R的截面圖形是
正六邊形
正六邊形

(理做文不做)已知空間三個點A(-2,0,2)、B(-1,1,2)和C(-3,0,4),設
a
=
AB
b
=
AC
.當實數(shù)k為
k=-
5
2
或k=2
k=-
5
2
或k=2
時k
a
+
b
與k
a
-2
b
互相垂直.

查看答案和解析>>

(2005•湖南)設函數(shù)f (x)的圖象與直線x=a,x=b及x軸所圍成圖形的面積稱為函數(shù)f(x)在[a,b]上的面積,已知函數(shù)y=sinnx在[0,
π
n
]上的面積為
2
n
(n∈N*),
(i)y=sin3x在[0,
3
]上的面積為
4
3
4
3
;
(ii)y=sin(3x-π)+1在[
π
3
,
3
]上的面積為
π+
2
3
π+
2
3

查看答案和解析>>

(文做理不做)已知:正四棱錐S-ABCD的高為
3
,斜高為2,設E為AB中點,F(xiàn)為SC中點,M為CD邊上的點.
(1)求證:EF∥平面SAD;
(2)試確定點M的位置,使得平面EFM⊥底面ABCD.

查看答案和解析>>

某校高三數(shù)學理科組有10名教師,其中4名女老師;文科組有5位老師,其中3位女老師.現(xiàn)在采取分層抽樣的方法(層內(nèi)采用不放回簡單隨機抽樣)從文、理兩科中抽取3名教師進行“標、綱、題”測試.
(1)求從文、理兩科各抽取的人數(shù).
(2)求從理科組抽取的教師中恰有1名女教師的概率.
(3)記ξ表示抽取的3名教師中男教師人數(shù),求ξ的概率分布列及數(shù)學期望.

查看答案和解析>>


同步練習冊答案