對(duì)于定義在區(qū)間D上的函數(shù)f(x),若存在閉區(qū)間[a,b]⊆D和常數(shù)c,使得對(duì)任意x
1∈[a,b],都有f(x
1)=c,且對(duì)任意x
2∈D,當(dāng)x
2∉[a,b]時(shí),f(x
2)>c恒成立,則稱函數(shù)f(x)為區(qū)間D上的“平底型”函數(shù).
(Ⅰ)判斷函數(shù)f
1(x)=|x-1|+|x-2|和f
2(x)=x+|x-2|是否為R上的“平底型”函數(shù)?并說明理由;
(Ⅱ)設(shè)f(x)是(Ⅰ)中的“平底型”函數(shù),k為非零常數(shù),若不等式|t-k|+|t+k|≥|k|•f(x)對(duì)一切t∈R恒成立,求實(shí)數(shù)x的取值范圍;
(Ⅲ)若函數(shù)
g(x)=mx+是區(qū)間[-2,+∞)上的“平底型”函數(shù),求m和n的值.