解:⑴由條件得 顯然 ------1 分 查看更多

 

題目列表(包括答案和解析)

在△ABC中,內(nèi)角A、B、C所對邊的邊長分別是a、b、c,已知c=2,C=.

(Ⅰ)若△ABC的面積等于,求a、b;

(Ⅱ)若,求△ABC的面積.

【解析】第一問中利用余弦定理及已知條件得又因?yàn)椤鰽BC的面積等于,所以,得聯(lián)立方程,解方程組得.

第二問中。由于即為即.

當(dāng)時, , ,   所以當(dāng)時,得,由正弦定理得,聯(lián)立方程組,解得,得到。

解:(Ⅰ) (Ⅰ)由余弦定理及已知條件得,………1分

又因?yàn)椤鰽BC的面積等于,所以,得,………1分

聯(lián)立方程,解方程組得.                 ……………2分

(Ⅱ)由題意得,

.             …………2分

當(dāng)時, , ,           ……1分

所以        ………………1分

當(dāng)時,得,由正弦定理得,聯(lián)立方程組

,解得,;   所以

 

查看答案和解析>>

已知,(其中

⑴求

⑵試比較的大小,并說明理由.

【解析】第一問中取,則;                         …………1分

對等式兩邊求導(dǎo),得

,則得到結(jié)論

第二問中,要比較的大小,即比較:的大小,歸納猜想可得結(jié)論當(dāng)時,;

當(dāng)時,;

當(dāng)時,;

猜想:當(dāng)時,運(yùn)用數(shù)學(xué)歸納法證明即可。

解:⑴取,則;                         …………1分

對等式兩邊求導(dǎo),得

,則。       …………4分

⑵要比較的大小,即比較:的大小,

當(dāng)時,;

當(dāng)時,;

當(dāng)時,;                              …………6分

猜想:當(dāng)時,,下面用數(shù)學(xué)歸納法證明:

由上述過程可知,時結(jié)論成立,

假設(shè)當(dāng)時結(jié)論成立,即,

當(dāng)時,

時結(jié)論也成立,

∴當(dāng)時,成立。                          …………11分

綜上得,當(dāng)時,;

當(dāng)時,;

當(dāng)時, 

 

查看答案和解析>>

設(shè)橢圓的左、右頂點(diǎn)分別為,點(diǎn)在橢圓上且異于兩點(diǎn),為坐標(biāo)原點(diǎn).

(Ⅰ)若直線的斜率之積為,求橢圓的離心率;

(Ⅱ)若,證明直線的斜率 滿足

【解析】(1)解:設(shè)點(diǎn)P的坐標(biāo)為.由題意,有  ①

,得,

,可得,代入①并整理得

由于,故.于是,所以橢圓的離心率

(2)證明:(方法一)

依題意,直線OP的方程為,設(shè)點(diǎn)P的坐標(biāo)為.

由條件得消去并整理得  ②

,

.

整理得.而,于是,代入②,

整理得

,故,因此.

所以.

(方法二)

依題意,直線OP的方程為,設(shè)點(diǎn)P的坐標(biāo)為.

由P在橢圓上,有

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118494193384555_ST.files/image036.png">,,所以,即   ③

,,得整理得.

于是,代入③,

整理得

解得,

所以.

 

查看答案和解析>>

如圖是單位圓上的點(diǎn),分別是圓軸的兩交點(diǎn),為正三角形.

(1)若點(diǎn)坐標(biāo)為,求的值;

(2)若,四邊形的周長為,試將表示成的函數(shù),并求出的最大值.

【解析】第一問利用設(shè) 

∵  A點(diǎn)坐標(biāo)為∴   ,

(2)中 由條件知  AB=1,CD=2 ,

中,由余弦定理得 

  ∴ 

∵       ∴    ,

∴  當(dāng)時,即 當(dāng) 時 , y有最大值5. .

 

查看答案和解析>>

附加題) 某電視臺的一個智力游戲節(jié)目中,有一道將四本由不同作者所著的外國名著A、B、C、D與它們的作者連線的題目,每本名著只能與一名作者連線,每名作者也只能與一本名著連線。每連對一個得3分,連錯得一1分,一名觀眾隨意連線,他的得分記作X。

   (1)求該觀眾得分非負(fù)的概率;

   (2)求X的分布列及數(shù)學(xué)期望。

 

查看答案和解析>>


同步練習(xí)冊答案