查看更多

 

題目列表(包括答案和解析)

(本題滿分12分) 已知函數(shù)的定義域為,對于任意正數(shù)a、b,都有,其中p是常數(shù),且.,當時,總有.

(1)求(寫成關(guān)于p的表達式);

   (2)判斷上的單調(diào)性,并加以證明;

   (3)解關(guān)于的不等式 .

查看答案和解析>>

(本題滿分12分) 某漁業(yè)個體戶今年年初用96萬元購進一艘漁船用于捕撈,規(guī)定這艘漁船的使用年限至多為15年. 第一年各種費用之和為10萬元,從第二年開始包括維修費用在內(nèi),每年所需費用之和都比上一年增加3萬元. 該船每年捕撈的總收入為45萬元.

(1)該漁業(yè)個體戶從今年起,第幾年開始盈利(即總收入大于成本及所有費用的和)?

(2)在年平均利潤達到最大時,該漁業(yè)個體戶決定淘汰這艘漁船,并將船以10萬元賣出,問:此時該漁業(yè)個體戶獲得的利潤為多少萬元?

(注:上述問題中所得的年限均取整數(shù))

查看答案和解析>>

(本題滿分12分) 設(shè)數(shù)列的前項和為,滿足(N*),令.

(1)求證:數(shù)列為等差數(shù)列;   (2)求數(shù)列的通項公式.

查看答案和解析>>

(本題滿分12分) 已知函數(shù).

(1)求函數(shù)的值域;

(2)求滿足方程的值.

查看答案和解析>>

(本題滿分12分)  在九江市教研室組織的一次優(yōu)秀青年教師聯(lián)誼活動中,有一個有獎競猜的環(huán)節(jié).主持人準備了AB兩個相互獨立的問題,并且宣布:幸運觀眾答對問題A可獲獎金1000元,答對問題B可獲獎金2000元,先答哪個題由觀眾自由選擇,但只有第一個問題答對,才能再答第二題,否則終止答題.若你被選為幸運觀眾,且假設(shè)你答對問題A、B的概率分別為、

(1) 記先回答問題A的獎金為隨機變量, 則的取值分別是多少?

(2) 你覺得應(yīng)先回答哪個問題才能使你獲得更多的獎金?請說明理由.

查看答案和解析>>

一、選擇題:本大題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。

題號

1

2

3

4

5

6

7

8

9

10

11

12

答案

B

B

D

D

C

A

C

B

A

C

C

C

二、填空題:本大題共4小題,每小題4分,共16分。把答案填在題中橫線上。

13.13     14.       15.2           16.1005

三、解答題:本大題共6小題,共74分。解答應(yīng)寫出文字說明,證明過程或演算步驟。

17.(本小題滿分12分)

解(I)

      

  (Ⅱ)由,

        

18.(本小題滿分12分)

解(I)記事件A;射手甲剩下3顆子彈,

      

(Ⅱ)記事件甲命中1次10環(huán),乙命中兩次10環(huán),事件;甲命中2次10環(huán),乙命中1次10環(huán),則四次射擊中恰有三次命中10環(huán)為事件

(Ⅲ)的取值分別為16,17,18,19,20,

     

19.(本題滿分12分)

證(Ⅰ)因為側(cè)面,故

 在中,   由余弦定理有

  故有 

  而     且平面

     

(Ⅱ)由

從而  且

 不妨設(shè)  ,則,則

  則

中有   從而(舍負)

的中點時,

 法二:以為原點軸,設(shè),則       由得    即

      

      化簡整理得       或

     當重合不滿足題意

     當的中點

     故的中點使

 (Ⅲ)取的中點,的中點,的中點的中點

 連,連,連

 連,且為矩形,

   故為所求二面角的平面角

中,

法二:由已知, 所以二面角的平面角的大小為向量的夾角

因為  

 

20.(本小題滿分12分)

(1)由

        切線的斜率切點坐標(2,5+

        所求切線方程為

   (2)若函數(shù)為上單調(diào)增函數(shù),

        則上恒成立,即不等式上恒成立

        也即上恒成立。

        令上述問題等價于

        而為在上的減函數(shù),

        則于是為所求

21.(本小題滿分12分)

解:(1),

        ∵直線l:x-y+2=0與圓x2+y2=b2相切,

=b,∴b=,b2=2,∴=3.                                                    

∴橢圓C1的方程是

(2)∵MP=MF,∴動點M到定直線l1:x=-1的距離等于它的定點F2(1,0)的距離,

∴動點M的軌跡是以l1為準線,F(xiàn)2為焦點的拋物線,∴點M的軌跡C2的方程為。

(3)Q(0,0),設(shè)

,

得  ,

化簡得,

當且僅當時等號成立,

,又∵y­22≥64,

∴當.    故的取值范圍是.

22.(本小題滿分14分)

解(I)由題意,令

      

 (Ⅱ)

      

  (1)當時,成立:

  (2)假設(shè)當時命題成立,即

       當時,

      

 

 

 


同步練習冊答案