3.常見力做功與能量轉(zhuǎn)化的對應(yīng)關(guān)系 重力做功: 和其他能相互轉(zhuǎn)化 彈簧彈力做功: 和其他能相互轉(zhuǎn)化 合外力做功: 和其他能相互轉(zhuǎn)化 除重力以外其它力做功: 和其他能相互轉(zhuǎn)化 滑動摩擦力做功: 轉(zhuǎn)化為內(nèi)能 電場力做功: 與其他能相互轉(zhuǎn)化 安培力做功: 和機(jī)械能相互轉(zhuǎn)化 查看更多

 

題目列表(包括答案和解析)

第七部分 熱學(xué)

熱學(xué)知識在奧賽中的要求不以深度見長,但知識點(diǎn)卻非常地多(考綱中羅列的知識點(diǎn)幾乎和整個力學(xué)——前五部分——的知識點(diǎn)數(shù)目相等)。而且,由于高考要求對熱學(xué)的要求逐年降低(本屆尤其低得“離譜”,連理想氣體狀態(tài)方程都沒有了),這就客觀上給奧賽培訓(xùn)增加了負(fù)擔(dān)。因此,本部分只能采新授課的培訓(xùn)模式,將知識點(diǎn)和例題講解及時地結(jié)合,爭取讓學(xué)員學(xué)一點(diǎn),就領(lǐng)會一點(diǎn)、鞏固一點(diǎn),然后再層疊式地往前推進(jìn)。

一、分子動理論

1、物質(zhì)是由大量分子組成的(注意分子體積和分子所占據(jù)空間的區(qū)別)

對于分子(單原子分子)間距的計算,氣體和液體可直接用,對固體,則與分子的空間排列(晶體的點(diǎn)陣)有關(guān)。

【例題1】如圖6-1所示,食鹽(NaCl)的晶體是由鈉離子(圖中的白色圓點(diǎn)表示)和氯離子(圖中的黑色圓點(diǎn)表示)組成的,離子鍵兩兩垂直且鍵長相等。已知食鹽的摩爾質(zhì)量為58.5×10-3kg/mol,密度為2.2×103kg/m3,阿伏加德羅常數(shù)為6.0×1023mol-1,求食鹽晶體中兩個距離最近的鈉離子中心之間的距離。

【解說】題意所求即圖中任意一個小立方塊的變長(設(shè)為a)的倍,所以求a成為本題的焦點(diǎn)。

由于一摩爾的氯化鈉含有NA個氯化鈉分子,事實(shí)上也含有2NA個鈉離子(或氯離子),所以每個鈉離子占據(jù)空間為 v = 

而由圖不難看出,一個離子占據(jù)的空間就是小立方體的體積a3 ,

即 a3 =  = ,最后,鄰近鈉離子之間的距離l = a

【答案】3.97×10-10m 。

〖思考〗本題還有沒有其它思路?

〖答案〗每個離子都被八個小立方體均分,故一個小立方體含有×8個離子 = 分子,所以…(此法普遍適用于空間點(diǎn)陣比較復(fù)雜的晶體結(jié)構(gòu)。)

2、物質(zhì)內(nèi)的分子永不停息地作無規(guī)則運(yùn)動

固體分子在平衡位置附近做微小振動(振幅數(shù)量級為0.1),少數(shù)可以脫離平衡位置運(yùn)動。液體分子的運(yùn)動則可以用“長時間的定居(振動)和短時間的遷移”來概括,這是由于液體分子間距較固體大的結(jié)果。氣體分子基本“居無定所”,不停地遷移(常溫下,速率數(shù)量級為102m/s)。

無論是振動還是遷移,都具備兩個特點(diǎn):a、偶然無序(雜亂無章)和統(tǒng)計有序(分子數(shù)比率和速率對應(yīng)一定的規(guī)律——如麥克斯韋速率分布函數(shù),如圖6-2所示);b、劇烈程度和溫度相關(guān)。

氣體分子的三種速率。最可幾速率vP :f(v) = (其中ΔN表示v到v +Δv內(nèi)分子數(shù),N表示分子總數(shù))極大時的速率,vP == ;平均速率:所有分子速率的算術(shù)平均值, ==;方均根速率:與分子平均動能密切相關(guān)的一個速率,==〔其中R為普適氣體恒量,R = 8.31J/(mol.K)。k為玻耳茲曼常量,k =  = 1.38×10-23J/K 〕

【例題2】證明理想氣體的壓強(qiáng)P = n,其中n為分子數(shù)密度,為氣體分子平均動能。

【證明】氣體的壓強(qiáng)即單位面積容器壁所承受的分子的撞擊力,這里可以設(shè)理想氣體被封閉在一個邊長為a的立方體容器中,如圖6-3所示。

考查yoz平面的一個容器壁,P =            ①

設(shè)想在Δt時間內(nèi),有Nx個分子(設(shè)質(zhì)量為m)沿x方向以恒定的速率vx碰撞該容器壁,且碰后原速率彈回,則根據(jù)動量定理,容器壁承受的壓力

 F ==                            ②

在氣體的實(shí)際狀況中,如何尋求Nx和vx呢?

考查某一個分子的運(yùn)動,設(shè)它的速度為v ,它沿x、y、z三個方向分解后,滿足

v2 =  +  + 

分子運(yùn)動雖然是雜亂無章的,但仍具有“偶然無序和統(tǒng)計有序”的規(guī)律,即

 =  +  +  = 3                    ③

這就解決了vx的問題。另外,從速度的分解不難理解,每一個分子都有機(jī)會均等的碰撞3個容器壁的可能。設(shè)Δt = ,則

 Nx = ·3N = na3                         ④

注意,這里的是指有6個容器壁需要碰撞,而它們被碰的幾率是均等的。

結(jié)合①②③④式不難證明題設(shè)結(jié)論。

〖思考〗此題有沒有更簡便的處理方法?

〖答案〗有!懊睢彼蟹肿右韵嗤乃俾蕍沿+x、?x、+y、?y、+z、?z這6個方向運(yùn)動(這樣造成的宏觀效果和“雜亂無章”地運(yùn)動時是一樣的),則 Nx =N = na3 ;而且vx = v

所以,P =  = ==nm = n

3、分子間存在相互作用力(注意分子斥力和氣體分子碰撞作用力的區(qū)別),而且引力和斥力同時存在,宏觀上感受到的是其合效果。

分子力是保守力,分子間距改變時,分子力做的功可以用分子勢能的變化表示,分子勢能EP隨分子間距的變化關(guān)系如圖6-4所示。

分子勢能和動能的總和稱為物體的內(nèi)能。

二、熱現(xiàn)象和基本熱力學(xué)定律

1、平衡態(tài)、狀態(tài)參量

a、凡是與溫度有關(guān)的現(xiàn)象均稱為熱現(xiàn)象,熱學(xué)是研究熱現(xiàn)象的科學(xué)。熱學(xué)研究的對象都是有大量分子組成的宏觀物體,通稱為熱力學(xué)系統(tǒng)(簡稱系統(tǒng))。當(dāng)系統(tǒng)的宏觀性質(zhì)不再隨時間變化時,這樣的狀態(tài)稱為平衡態(tài)。

b、系統(tǒng)處于平衡態(tài)時,所有宏觀量都具有確定的值,這些確定的值稱為狀態(tài)參量(描述氣體的狀態(tài)參量就是P、V和T)。

c、熱力學(xué)第零定律(溫度存在定律):若兩個熱力學(xué)系統(tǒng)中的任何一個系統(tǒng)都和第三個熱力學(xué)系統(tǒng)處于熱平衡狀態(tài),那么,這兩個熱力學(xué)系統(tǒng)也必定處于熱平衡。這個定律反映出:處在同一熱平衡狀態(tài)的所有的熱力學(xué)系統(tǒng)都具有一個共同的宏觀特征,這一特征是由這些互為熱平衡系統(tǒng)的狀態(tài)所決定的一個數(shù)值相等的狀態(tài)函數(shù),這個狀態(tài)函數(shù)被定義為溫度。

2、溫度

a、溫度即物體的冷熱程度,溫度的數(shù)值表示法稱為溫標(biāo)。典型的溫標(biāo)有攝氏溫標(biāo)t、華氏溫標(biāo)F(F = t + 32)和熱力學(xué)溫標(biāo)T(T = t + 273.15)。

b、(理想)氣體溫度的微觀解釋: = kT (i為分子的自由度 = 平動自由度t + 轉(zhuǎn)動自由度r + 振動自由度s 。對單原子分子i = 3 ,“剛性”〈忽略振動,s = 0,但r = 2〉雙原子分子i = 5 。對于三個或三個以上的多原子分子,i = 6 。能量按自由度是均分的),所以說溫度是物質(zhì)分子平均動能的標(biāo)志。

c、熱力學(xué)第三定律:熱力學(xué)零度不可能達(dá)到。(結(jié)合分子動理論的觀點(diǎn)2和溫度的微觀解釋很好理解。)

3、熱力學(xué)過程

a、熱傳遞。熱傳遞有三種方式:傳導(dǎo)(對長L、橫截面積S的柱體,Q = K

查看答案和解析>>

第九部分 穩(wěn)恒電流

第一講 基本知識介紹

第八部分《穩(wěn)恒電流》包括兩大塊:一是“恒定電流”,二是“物質(zhì)的導(dǎo)電性”。前者是對于電路的外部計算,后者則是深入微觀空間,去解釋電流的成因和比較不同種類的物質(zhì)導(dǎo)電的情形有什么區(qū)別。

應(yīng)該說,第一塊的知識和高考考綱對應(yīng)得比較好,深化的部分是對復(fù)雜電路的計算(引入了一些新的處理手段)。第二塊雖是全新的內(nèi)容,但近幾年的考試已經(jīng)很少涉及,以至于很多奧賽培訓(xùn)資料都把它刪掉了。鑒于在奧賽考綱中這部分內(nèi)容還保留著,我們還是想粗略地介紹一下。

一、歐姆定律

1、電阻定律

a、電阻定律 R = ρ

b、金屬的電阻率 ρ = ρ0(1 + αt)

2、歐姆定律

a、外電路歐姆定律 U = IR ,順著電流方向電勢降落

b、含源電路歐姆定律

在如圖8-1所示的含源電路中,從A點(diǎn)到B點(diǎn),遵照原則:①遇電阻,順電流方向電勢降落(逆電流方向電勢升高)②遇電源,正極到負(fù)極電勢降落,負(fù)極到正極電勢升高(與電流方向無關(guān)),可以得到以下關(guān)系

UA ? IR ? ε ? Ir = UB 

這就是含源電路歐姆定律。

c、閉合電路歐姆定律

在圖8-1中,若將A、B兩點(diǎn)短接,則電流方向只可能向左,含源電路歐姆定律成為

UA + IR ? ε + Ir = UB = UA

 ε = IR + Ir ,或 I = 

這就是閉合電路歐姆定律。值得注意的的是:①對于復(fù)雜電路,“干路電流I”不能做絕對的理解(任何要考察的一條路均可視為干路);②電源的概念也是相對的,它可以是多個電源的串、并聯(lián),也可以是電源和電阻組成的系統(tǒng);③外電阻R可以是多個電阻的串、并聯(lián)或混聯(lián),但不能包含電源。

二、復(fù)雜電路的計算

1、戴維南定理:一個由獨(dú)立源、線性電阻、線性受控源組成的二端網(wǎng)絡(luò),可以用一個電壓源和電阻串聯(lián)的二端網(wǎng)絡(luò)來等效。(事實(shí)上,也可等效為“電流源和電阻并聯(lián)的的二端網(wǎng)絡(luò)”——這就成了諾頓定理。)

應(yīng)用方法:其等效電路的電壓源的電動勢等于網(wǎng)絡(luò)的開路電壓,其串聯(lián)電阻等于從端鈕看進(jìn)去該網(wǎng)絡(luò)中所有獨(dú)立源為零值時的等效電阻。

2、基爾霍夫(克?品颍┒

a、基爾霍夫第一定律:在任一時刻流入電路中某一分節(jié)點(diǎn)的電流強(qiáng)度的總和,等于從該點(diǎn)流出的電流強(qiáng)度的總和。

例如,在圖8-2中,針對節(jié)點(diǎn)P ,有

I2 + I3 = I1 

基爾霍夫第一定律也被稱為“節(jié)點(diǎn)電流定律”,它是電荷受恒定律在電路中的具體體現(xiàn)。

對于基爾霍夫第一定律的理解,近來已經(jīng)拓展為:流入電路中某一“包容塊”的電流強(qiáng)度的總和,等于從該“包容塊”流出的電流強(qiáng)度的總和。

b、基爾霍夫第二定律:在電路中任取一閉合回路,并規(guī)定正的繞行方向,其中電動勢的代數(shù)和,等于各部分電阻(在交流電路中為阻抗)與電流強(qiáng)度乘積的代數(shù)和。

例如,在圖8-2中,針對閉合回路① ,有

ε3 ? ε2 = I3 ( r3 + R2 + r2 ) ? I2R2 

基爾霍夫第二定律事實(shí)上是含源部分電路歐姆定律的變體(☆同學(xué)們可以列方程 UP = … = UP得到和上面完全相同的式子)。

3、Y?Δ變換

在難以看清串、并聯(lián)關(guān)系的電路中,進(jìn)行“Y型?Δ型”的相互轉(zhuǎn)換常常是必要的。在圖8-3所示的電路中

☆同學(xué)們可以證明Δ→ Y的結(jié)論…

Rc = 

Rb = 

Ra = 

Y→Δ的變換稍稍復(fù)雜一些,但我們?nèi)匀豢梢缘玫?/p>

R1 = 

R2 = 

R3 = 

三、電功和電功率

1、電源

使其他形式的能量轉(zhuǎn)變?yōu)殡娔艿难b置。如發(fā)電機(jī)、電池等。發(fā)電機(jī)是將機(jī)械能轉(zhuǎn)變?yōu)殡娔;干電池、蓄電池是將化學(xué)能轉(zhuǎn)變?yōu)殡娔;光電池是將光能轉(zhuǎn)變?yōu)殡娔;原子電池是將原子核放射能轉(zhuǎn)變?yōu)殡娔;在電子設(shè)備中,有時也把變換電能形式的裝置,如整流器等,作為電源看待。

電源電動勢定義為電源的開路電壓,內(nèi)阻則定義為沒有電動勢時電路通過電源所遇到的電阻。據(jù)此不難推出相同電源串聯(lián)、并聯(lián),甚至不同電源串聯(lián)、并聯(lián)的時的電動勢和內(nèi)阻的值。

例如,電動勢、內(nèi)阻分別為ε1 、r1和ε2 、r2的電源并聯(lián),構(gòu)成的新電源的電動勢ε和內(nèi)阻r分別為(☆師生共同推導(dǎo)…)

ε = 

r = 

2、電功、電功率

電流通過電路時,電場力對電荷作的功叫做電功W。單位時間內(nèi)電場力所作的功叫做電功率P 。

計算時,只有W = UIt和P = UI是完全沒有條件的,對于不含源的純電阻,電功和焦耳熱重合,電功率則和熱功率重合,有W = I2Rt = t和P = I2R = 

對非純電阻電路,電功和電熱的關(guān)系依據(jù)能量守恒定律求解。 

四、物質(zhì)的導(dǎo)電性

在不同的物質(zhì)中,電荷定向移動形成電流的規(guī)律并不是完全相同的。

1、金屬中的電流

即通常所謂的不含源純電阻中的電流,規(guī)律遵從“外電路歐姆定律”。

2、液體導(dǎo)電

能夠?qū)щ姷囊后w叫電解液(不包括液態(tài)金屬)。電解液中離解出的正負(fù)離子導(dǎo)電是液體導(dǎo)電的特點(diǎn)(如:硫酸銅分子在通常情況下是電中性的,但它在溶液里受水分子的作用就會離解成銅離子Cu2+和硫酸根離子S,它們在電場力的作用下定向移動形成電流)。

在電解液中加電場時,在兩個電極上(或電極旁)同時產(chǎn)生化學(xué)反應(yīng)的過程叫作“電解”。電解的結(jié)果是在兩個極板上(或電極旁)生成新的物質(zhì)。

液體導(dǎo)電遵從法拉第電解定律——

法拉第電解第一定律:電解時在電極上析出或溶解的物質(zhì)的質(zhì)量和電流強(qiáng)度、跟通電時間成正比。表達(dá)式:m = kIt = KQ (式中Q為析出質(zhì)量為m的物質(zhì)所需要的電量;K為電化當(dāng)量,電化當(dāng)量的數(shù)值隨著被析出的物質(zhì)種類而不同,某種物質(zhì)的電化當(dāng)量在數(shù)值上等于通過1C電量時析出的該種物質(zhì)的質(zhì)量,其單位為kg/C。)

法拉第電解第二定律:物質(zhì)的電化當(dāng)量K和它的化學(xué)當(dāng)量成正比。某種物質(zhì)的化學(xué)當(dāng)量是該物質(zhì)的摩爾質(zhì)量M(克原子量)和它的化合價n的比值,即 K =  ,而F為法拉第常數(shù),對任何物質(zhì)都相同,F(xiàn) = 9.65×104C/mol 。

將兩個定律聯(lián)立可得:m = Q 。

3、氣體導(dǎo)電

氣體導(dǎo)電是很不容易的,它的前提是氣體中必須出現(xiàn)可以定向移動的離子或電子。按照“載流子”出現(xiàn)方式的不同,可以把氣體放電分為兩大類——

a、被激放電

在地面放射性元素的輻照以及紫外線和宇宙射線等的作用下,會有少量氣體分子或原子被電離,或在有些燈管內(nèi),通電的燈絲也會發(fā)射電子,這些“載流子”均會在電場力作用下產(chǎn)生定向移動形成電流。這種情況下的電流一般比較微弱,且遵從歐姆定律。典型的被激放電情形有

b、自激放電

但是,當(dāng)電場足夠強(qiáng),電子動能足夠大,它們和中性氣體相碰撞時,可以使中性分子電離,即所謂碰撞電離。同時,在正離子向陰極運(yùn)動時,由于以很大的速度撞到陰極上,還可能從陰極表面上打出電子來,這種現(xiàn)象稱為二次電子發(fā)射。碰撞電離和二次電子發(fā)射使氣體中在很短的時間內(nèi)出現(xiàn)了大量的電子和正離子,電流亦迅速增大。這種現(xiàn)象被稱為自激放電。自激放電不遵從歐姆定律。

常見的自激放電有四大類:輝光放電、弧光放電、火花放電、電暈放電。

4、超導(dǎo)現(xiàn)象

據(jù)金屬電阻率和溫度的關(guān)系,電阻率會隨著溫度的降低和降低。當(dāng)電阻率降為零時,稱為超導(dǎo)現(xiàn)象。電阻率為零時對應(yīng)的溫度稱為臨界溫度。超導(dǎo)現(xiàn)象首先是荷蘭物理學(xué)家昂尼斯發(fā)現(xiàn)的。

超導(dǎo)的應(yīng)用前景是顯而易見且相當(dāng)廣闊的。但由于一般金屬的臨界溫度一般都非常低,故產(chǎn)業(yè)化的價值不大,為了解決這個矛盾,科學(xué)家們致力于尋找或合成臨界溫度比較切合實(shí)際的材料就成了當(dāng)今前沿科技的一個熱門領(lǐng)域。當(dāng)前人們的研究主要是集中在合成材料方面,臨界溫度已經(jīng)超過100K,當(dāng)然,這個溫度距產(chǎn)業(yè)化的期望值還很遠(yuǎn)。

5、半導(dǎo)體

半導(dǎo)體的電阻率界于導(dǎo)體和絕緣體之間,且ρ

查看答案和解析>>


同步練習(xí)冊答案