共面向量定理:兩個(gè)向量不共線.則向量與向量共面的充要條件是存在實(shí)數(shù)對x.y使=. 推論:空間一點(diǎn)P位于平面MAB內(nèi)的充要條件是存在有序?qū)崝?shù)對x.y使得:.或?qū)臻g任意一點(diǎn)O有:. 查看更多

 

題目列表(包括答案和解析)

材料:采訪零向量

  W:你好!零向量.我是《數(shù)學(xué)天地》的一名記者,為了讓在校的高中生更好了解你,能不能對你進(jìn)行一次采訪呢?

  零向量:當(dāng)然可以,我們向量王國隨時(shí)恭候大家的光臨,很樂意接受你的采訪,讓高中生朋友更加了解我,更好地為他們服務(wù).

  W:好的,那就開始吧!你的名字有什么特殊的含義嗎?

  零向量:零向量就是長度為零的向量,它與數(shù)字0有著密切的聯(lián)系,所以用0來表示我.

  W:你與其他向量有什么共同之處呢?

  零向量:既然我是向量王國的一個(gè)成員,就具有向量的基本性質(zhì),如既有大小又有方向,在進(jìn)行加、減法運(yùn)算時(shí)滿足交換律和結(jié)合律,還定義了與實(shí)數(shù)的積.

  W:你有哪些值得驕傲的特殊榮耀呢?

  零向量:首先,我的方向是不定的,可以與任意的向量平行.其次,我還有其他一些向量所沒有的特殊待遇:如我的相反向量仍是零向量;在向量的線性運(yùn)算中,我與實(shí)數(shù)0很有相似之處.

  W:你有如此多的榮耀,那么是否還有煩惱之事呢?

  零向量:當(dāng)然有了,在向量王國還有許多“權(quán)利和義務(wù)”卻大有把我排斥在外之意,如平行向量的定義,向量共線定理,兩向量夾角的定義都對我進(jìn)行了限制.所有這些確實(shí)給一些高中生帶來了很多苦惱,在此我向大家真誠地說一聲:對不起,這不是我的錯(cuò).但我還是很高興有這次機(jī)會(huì)與大家見面.

  W:OK!采訪就到這里吧,非常感謝你的合作,再見!

  零向量:Bye!

閱讀上面的材料回答下面問題.

應(yīng)用零向量時(shí)應(yīng)注意哪些問題?

查看答案和解析>>

類比平面向量基本定理:“如果e1,e2是同一平面內(nèi)的兩個(gè)不共線的向量,那么對于這一平面內(nèi)任意向量a,有且只有一對實(shí)數(shù)λ1,λ2,使得a=λ1e1+λ2e2”,寫出空間向量基本定理是:________.

查看答案和解析>>

設(shè)是兩個(gè)不共線的非零向量.

(1)若=,=,=,求證:A,BD三點(diǎn)共線;

(2)試求實(shí)數(shù)k的值,使向量共線. (本小題滿分13分)

【解析】第一問利用=()+()+==得到共線問題。

第二問,由向量共線可知

存在實(shí)數(shù),使得=()

=,結(jié)合平面向量基本定理得到參數(shù)的值。

解:(1)∵=()+()+

==    ……………3分

     ……………5分

又∵A,B,D三點(diǎn)共線   ……………7分

(2)由向量共線可知

存在實(shí)數(shù),使得=()   ……………9分

=   ……………10分

又∵不共線

  ……………12分

解得

 

查看答案和解析>>


同步練習(xí)冊答案