直線與直線的位置關(guān)系: (1)平行且(在軸上截距), (2)相交, (3)重合且. 提醒:(1) ..僅是兩直線平行.相交.重合的充分不必要條件!為什么? (2)在解析幾何中.研究兩條直線的位置關(guān)系時.有可能這兩條直線重合.而在立體幾何中提到的兩條直線都是指不重合的兩條直線, (3)直線與直線垂直.如(1)設(shè)直線和.當(dāng)= -1 時∥, 當(dāng)= 時,當(dāng)時與相交,當(dāng)= 3 時與重合, (2)已知直線的方程為.則與平行.且過點的直線方程是 , (3)兩條直線與相交于第一象限.則實數(shù)的取值范圍是 , (4)設(shè)分別是△ABC中∠A.∠B.∠C所對邊的邊長.則直線與的位置關(guān)系是 ,垂直 查看更多

 

題目列表(包括答案和解析)

以下五個命題中:
①若兩直線平行,則兩直線斜率相等;
②設(shè)F1、F2為兩個定點,a為正常數(shù),且||PF1|-|PF2||=2a,則動點P的軌跡為雙曲線;
③方程2x2-5x+2=0的兩根可分別作為橢圓和雙曲線的離心率;
④對任意實數(shù)k,直線l:kx-y+1-k=0與圓x2+y2-2y-4=0的位置關(guān)系是相交;
⑤P為橢圓
x2
a2
+
y2
b2
=1(a>b>0)上一點,F(xiàn)為它的一個焦點,則以PF為直徑的圓與以長軸為直徑的圓相切.
其中真命題的序號為
③④⑤
③④⑤
.(寫出所有真命題的序號)

查看答案和解析>>

設(shè)拋物線>0)的焦點為,準(zhǔn)線為,上一點,已知以為圓心,為半徑的圓,兩點.

(Ⅰ)若,的面積為,求的值及圓的方程;

 (Ⅱ)若,三點在同一條直線上,直線平行,且只有一個公共點,求坐標(biāo)原點到,距離的比值.

【命題意圖】本題主要考查圓的方程、拋物線的定義、直線與拋物線的位置關(guān)系、點到直線距離公式、線線平行等基礎(chǔ)知識,考查數(shù)形結(jié)合思想和運(yùn)算求解能力.

【解析】設(shè)準(zhǔn)線軸的焦點為E,圓F的半徑為,

則|FE|==,E是BD的中點,

(Ⅰ) ∵,∴=,|BD|=,

設(shè)A(,),根據(jù)拋物線定義得,|FA|=

的面積為,∴===,解得=2,

∴F(0,1),  FA|=,  ∴圓F的方程為:

(Ⅱ) 解析1∵,,三點在同一條直線上, ∴是圓的直徑,,

由拋物線定義知,∴,∴的斜率為或-,

∴直線的方程為:,∴原點到直線的距離=,

設(shè)直線的方程為:,代入得,,

只有一個公共點, ∴=,∴,

∴直線的方程為:,∴原點到直線的距離=

∴坐標(biāo)原點到,距離的比值為3.

解析2由對稱性設(shè),則

      點關(guān)于點對稱得:

     得:,直線

     切點

     直線

坐標(biāo)原點到距離的比值為

 

查看答案和解析>>


同步練習(xí)冊答案