問題1. (湖北)若互不相等的實(shí)數(shù)..成等差數(shù)列...成等比數(shù)列.且.則 (天津)設(shè)等差數(shù)列的公差不為..若是與的等比中項(xiàng).則 (海南)已知..成等差數(shù)列.成等比數(shù)列.則的最小值是 已知等差數(shù)列的公差.且成等比數(shù)列.則 (全國Ⅰ)等比數(shù)列的前項(xiàng)和為.已知..成等差數(shù)列. 則的公比為 問題2.(全國Ⅰ文)設(shè)是等差數(shù)列.是各項(xiàng)都為正數(shù)的等比數(shù)列.且.. 求.的通項(xiàng)公式,求數(shù)列的前項(xiàng)和. 問題3.(全國Ⅲ)在等差數(shù)列中.公差.是與的等比中項(xiàng).已知數(shù)列成等比數(shù)列.求數(shù)列的通項(xiàng) 問題4.(屆東北師大附中高三月考)數(shù)列的前項(xiàng)和記作.滿足.. 證明數(shù)列為等比數(shù)列,并求出數(shù)列的通項(xiàng)公式. 記.數(shù)列的前項(xiàng)和為.求. 問題5.(上海) 已知數(shù)列(為正整數(shù))是首項(xiàng)是.公比為的等比數(shù)列. 求和: 由的結(jié)果歸納概括出關(guān)于正整數(shù)的一個結(jié)論.并加以證明. 查看更多

 

題目列表(包括答案和解析)

(2006•浦東新區(qū)模擬)(1)已知函數(shù)f(x)=ax-x(a>1).
①若f(3)<0,試求a的取值范圍;
②寫出一組數(shù)a,x0(x0≠3,保留4位有效數(shù)字),使得f(x0)<0成立;
(2)若曲線y=x+
p
x
(p≠0)上存在兩個不同點(diǎn)關(guān)于直線y=x對稱,求實(shí)數(shù)p的取值范圍;
(3)當(dāng)0<a<1時,就函數(shù)y=ax與y=logax的圖象的交點(diǎn)情況提出你的問題,并加以解決.(說明:①函數(shù)f(x)=xlnx有如下性質(zhì):在區(qū)間(0,
1
e
]
上單調(diào)遞減,在區(qū)間[
1
e
,1)
上單調(diào)遞增.解題過程中可以利用;②將根據(jù)提出和解決問題的不同層次區(qū)別給分.)

查看答案和解析>>

(2012•湖北模擬)已知數(shù)列A:a1,a2,…,an(0≤a1<a2<…an,n≥3)具有性質(zhì)P;對任意i,j(1≤i≤j≤n),aj+ai與aj-ai兩數(shù)中至少有一個是該數(shù)列中的一項(xiàng),現(xiàn)給出以下四個命題:
①數(shù)列0,2,4,6具有性質(zhì)P;
②若數(shù)列A具有性質(zhì)P,則a1=0;
③若數(shù)列A具有性質(zhì)P且a1≠0an-an-k=ak(k=1,2,…,(n-1);
④若數(shù)列a1,a2,a3(0≤a1<a2<a3)具有性質(zhì)P,則a3=a1+a2
其中真命題有( 。

查看答案和解析>>

已知首項(xiàng)為x1的數(shù)列{xn}滿足xn+1=
axnxn+1
(a為常數(shù)).
(1)若對于任意的x1≠-1,有xn+2=xn對于任意的n∈N*都成立,求a的值;
(2)當(dāng)a=1時,若x1>0,數(shù)列{xn}是遞增數(shù)列還是遞減數(shù)列?請說明理由;
(3)當(dāng)a確定后,數(shù)列{xn}由其首項(xiàng)x1確定,當(dāng)a=2時,通過對數(shù)列{xn}的探究,寫出“{xn}是有窮數(shù)列”的一個真命題(不必證明).說明:對于第3題,將根據(jù)寫出真命題所體現(xiàn)的思維層次和對問題探究的完整性,給予不同的評分.

查看答案和解析>>

(1)已知函數(shù)f(x)=ax-x(a>1).
①若f(3)<0,試求a的取值范圍;
②寫出一組數(shù)a,x0(x0≠3,保留4位有效數(shù)字),使得f(x0)<0成立;
(2)在曲線y=x-
2
x
上存在兩個不同點(diǎn)關(guān)于直線y=x對稱,求出其坐標(biāo);若曲線y=x+
p
x
(p≠0)上存在兩個不同點(diǎn)關(guān)于直線y=x對稱,求實(shí)數(shù)p的范圍;
(3)當(dāng)0<a<1時,就函數(shù)y=ax與y=logax的圖象的交點(diǎn)情況提出你的問題,并取a=
1
16
a=
2
2
加以研究.當(dāng)0<a<1時,就函數(shù)y=ax與y=logax的圖象的交點(diǎn)情況提出你的問題,并加以解決.(說明:①函數(shù)f(x)=xlnx有如下性質(zhì):在區(qū)間(0,
1
e
]
上單調(diào)遞減,在區(qū)間[
1
e
,1)
上單調(diào)遞增.解題過程中可以利用;②將根據(jù)提出和解決問題的不同層次區(qū)別給分.)

查看答案和解析>>

(2008•湖北模擬)如圖,目標(biāo)函數(shù)z=kx+y的可行域?yàn)樗倪呅蜲ABC(含邊界),A(1,0)、C(0,1),若B(
3
4
,
2
3
)
為目標(biāo)函數(shù)取最大值的最優(yōu)解,則k的取值范圍是
[
4
9
,
8
3
]
[
4
9
,
8
3
]

查看答案和解析>>


同步練習(xí)冊答案