題目列表(包括答案和解析)
(本小題滿分12分.其中(Ⅰ)小問6分,(Ⅱ)小問6分)
已知,數(shù)列{an}滿足:,.
(Ⅰ)求證:;
(Ⅱ)判斷an與an+1的大小,并說明理由.
(本小題滿分12分.其中(Ⅰ)小問6分,(Ⅱ)小問6分)
如圖,已知四棱錐P-ABCD的底面ABCD是邊長為2的正方形,PD⊥底面ABCD,E、F分別為棱BC、AD的中點.
(Ⅰ)若PD=1,求異面直線PB和DE所成角的余弦值;
(Ⅱ)若二面角P-BF-C的余弦值為,求四棱錐P-ABCD的體積
(本小題滿分12分)
道路交通安全法中將飲酒后違法駕駛機動車的行為分成兩個檔次:“酒后駕車”和“醉酒駕車”,其檢測標準是駕駛?cè)藛T血液中的酒精含量Q(簡稱血酒含量,單位是毫克/100毫升),當20≤Q<80時,為酒后駕車;當Q≥80時,為醉酒駕車.某市公安局交通管理部門在某路段的一次攔查行動中,依法檢查了200輛機動車駕駛員的血酒含量,其中查處酒后駕車的有6人,查處醉酒駕車的有2人,依據(jù)上述材料回答下列問題:
(Ⅰ)分別寫出違法駕車發(fā)生的頻率和醉酒駕車占違法駕車總數(shù)的百分數(shù);
(Ⅱ)從違法駕車的8人中抽取2人,求取到醉酒駕車人數(shù)的分布列和期望。
(Ⅲ)飲酒后違法駕駛機動車極易發(fā)生交通事故,假設(shè)酒后駕車和醉酒駕車發(fā)生交通事故的概率分別是0.1和0.25,且每位駕駛員是否發(fā)生交通事故是相互獨立的。依此計算被查處的8名駕駛員中至少有一人發(fā)生交通事故的概率(列式)。
(本小題滿分12分)
有編號為,,…的10個零件,測量其直徑(單位:cm),得到下面數(shù)據(jù):
其中直徑在區(qū)間[1.48,1.52]內(nèi)的零件為一等品。
(Ⅰ)從上述10個零件中,隨機抽取一個,求這個零件為一等品的概率;
(Ⅱ)從一等品零件中,隨機抽取2個.
(。┯昧慵木幪柫谐鏊锌赡艿某槿〗Y(jié)果;
(ⅱ)求這2個零件直徑相等的概率。本小題主要考查用列舉法計算隨機事件所含的基本事件數(shù)及事件發(fā)生的概率等基礎(chǔ)知識,考查數(shù)據(jù)處理能力及運用概率知識解決簡單的實際問題的能力。滿分12分
【解析】(Ⅰ)解:由所給數(shù)據(jù)可知,一等品零件共有6個.設(shè)“從10個零件中,隨機抽取一個為一等品”為事件A,則P(A)==.
(Ⅱ)(i)解:一等品零件的編號為.從這6個一等品零件中隨機抽取2個,所有可能的結(jié)果有:,,,
,,,共有15種.
(ii)解:“從一等品零件中,隨機抽取的2個零件直徑相等”(記為事件B)的所有可能結(jié)果有:,,共有6種.
所以P(B)=.
(本小題滿分12分)
如圖,在五面體ABCDEF中,四邊形ADEF是正方形,F(xiàn)A⊥平面ABCD,BC∥AD,CD=1,AD=,∠BAD=∠CDA=45°.
(Ⅰ)求異面直線CE與AF所成角的余弦值;
(Ⅱ)證明CD⊥平面ABF;
(本小題滿分12分)
有編號為,,…的10個零件,測量其直徑(單位:cm),得到下面數(shù)據(jù):
其中直徑在區(qū)間[1.48,1.52]內(nèi)的零件為一等品。
(Ⅰ)從上述10個零件中,隨機抽取一個,求這個零件為一等品的概率;
(Ⅱ)從一等品零件中,隨機抽取2個.
(。┯昧慵木幪柫谐鏊锌赡艿某槿〗Y(jié)果;
(ⅱ)求這2個零件直徑相等的概率。本小題主要考查用列舉法計算隨機事件所含的基本事件數(shù)及事件發(fā)生的概率等基礎(chǔ)知識,考查數(shù)據(jù)處理能力及運用概率知識解決簡單的實際問題的能力。滿分12分
【解析】(Ⅰ)解:由所給數(shù)據(jù)可知,一等品零件共有6個.設(shè)“從10個零件中,隨機抽取一個為一等品”為事件A,則P(A)==.
(Ⅱ)(i)解:一等品零件的編號為.從這6個一等品零件中隨機抽取2個,所有可能的結(jié)果有:,,,
,,,共有15種.
(ii)解:“從一等品零件中,隨機抽取的2個零件直徑相等”(記為事件B)的所有可能結(jié)果有:,,共有6種.
所以P(B)=.
(本小題滿分12分)
如圖,在五面體ABCDEF中,四邊形ADEF是正方形,F(xiàn)A⊥平面ABCD,BC∥AD,CD=1,AD=,∠BAD=∠CDA=45°.
(Ⅰ)求異面直線CE與AF所成角的余弦值;
(Ⅱ)證明CD⊥平面ABF;
一、DDBCD CABCA
二、11.1; 12.; 13. 14.; 15.;
16.
三.解答題(本大題共6小題,共76分)
17.解:(1)法一:由題可得;
法二:由題,
故,從而;
法三:由題,解得,
故,從而。
(2),令,
則,
在單調(diào)遞減,
故,
從而的值域為。
18.解:(1)的可能取值為0,1,2,3,4,,
,
,,。
因此隨機變量的分布列為下表所示;
0
1
2
3
4
(2)由⑴得:,
19.法一:(1)連接,設(shè),則。
因為,所以,故,從而,
故。
又因為,
所以,當且僅當取等號。
此時為邊的中點,為邊的中點。
故當為邊的中點時,的長度最小,其值為
(2)連接,因為此時分別為的中點,
故,所以均為直角三角形,
從而,所以即為直線與平面所成的角。
因為,所以即為所求;
(3)因,又,所以。
又,故三棱錐的表面積為
。
因為三棱錐的體積,
所以。
法二:(1)因,故。
設(shè),則。
所以,
當且僅當取等號。此時為邊的中點。
故當為的中點時,的長度最小,其值為;
(2)因,又,所以。
記點到平面的距離為,
因,故,解得。
因,故;
(3)同“法一”。
法三:(1)如圖,以為原點建立空間直角坐標系,設(shè),則,
所以,當且僅當取等號。
此時為邊的中點,為邊的中點。
故當為邊的中點時,的長度最小,其值為;
(2)設(shè)為面的法向量,因,
故。取,得。
又因,故。
因此,從而,
所以;
(3)由題意可設(shè)為三棱錐的內(nèi)切球球心,
則,可得。
與(2)同法可得平面的一個法向量,
又,故,
解得。顯然,故。
20.解:(1)當時,。令得,
故當 時,單調(diào)遞增;
當時,單調(diào)遞減。
所以函數(shù)的單調(diào)遞增區(qū)間為,
單調(diào)遞減區(qū)間為;
(2)法一:因,故。
令,
要使對滿足的一切成立,則,
解得;
法二:,故。
由可解得。
因為在單調(diào)遞減,因此在單調(diào)遞增,故。設(shè),
則,因為,
所以,從而在單調(diào)遞減,
故。因此,即。
(3)因為,所以
即對一切恒成立。
,令,
則。因為,所以,
故在單調(diào)遞增,有。
因此,從而。
所以。
21.解:(1)設(shè),則由題,
由得,故。
又根據(jù)可得,
即,代入可得,
解得(舍負)。故的方程為;
(2)法一:設(shè),代入得,
故,
從而
因此。
法二:顯然點是拋物線的焦點,點是其準線上一點。
設(shè)為的中點,過分別作的垂線,垂足分別為,
則。
因此以為直徑的圓與準線相切(于點)。
若與重合,則。否則點在外,因此。
綜上知。
22.證明:(1)因,故。
顯然,因此數(shù)列是以為首項,以2為公比的等比數(shù)列;
(2)由⑴知,解得;
(3)因為
所以。
又(當且僅當時取等號),
故。
綜上可得。(亦可用數(shù)學歸納法)
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com