過點作傾斜角為的直線.交拋物線:于兩點.且成等比數(shù)列. 查看更多

 

題目列表(包括答案和解析)

   過點作傾斜角為的直線,與拋物線交于、兩點,則的值等于     

查看答案和解析>>

傾斜角為α的直線經過拋物線y2=8x的焦點F,且與拋物線交于A,B兩點.
(1)若|AF|,4,|BF|成等差數(shù)列,求直線AB的方程;
(2)若α為銳角,作線段AB的垂直平分線m交于x軸于點P,試證明|FP|-|FP|cos2α為定值,并求此定值.

查看答案和解析>>

傾斜角為的直線經過拋物線的焦點F,且與

拋物線交于A,B兩點。

(1)若成等差數(shù)列,求直線AB的方程;

(2)若為銳角,作線段AB的垂直平分線,

試證明為定值,并求此定值。

查看答案和解析>>

傾斜角為α的直線經過拋物線y2=8x的焦點F,且與拋物線交于A,B兩點.
(1)若|AF|,4,|BF|成等差數(shù)列,求直線AB的方程;
(2)若α為銳角,作線段AB的垂直平分線m交于x軸于點P,試證明|FP|-|FP|cos2α為定值,并求此定值.

查看答案和解析>>

如圖,傾斜角為α的直線經過拋物線y2=8x的焦點F,且與拋物線交于A、B兩點.
(1)求拋物線的焦點F的坐標及準線l的方程;
(2)若α為銳角,作線段AB的垂直平分線m交x軸于點P,證明|FP|-|FP|cos2α為定值,并求此定值.

查看答案和解析>>

一、DDBCD  CABCA

二、11.1;       12.;     13.           14.;    15.;

16.

三.解答題(本大題共6小題,共76分)

17.解:(1)法一:由題可得;

法二:由題,

,從而

法三:由題,解得,

,從而。

(2),令,

單調遞減,

,

從而的值域為。

18.解:(1)的可能取值為0,1,2,3,4,

,

,。

因此隨機變量的分布列為下表所示;

0

1

2

3

4

(2)由⑴得:,

19.法一:(1)連接,設,則。

因為,所以,故,從而

。

又因為

所以,當且僅當取等號。

此時邊的中點,邊的中點。

故當邊的中點時,的長度最小,其值為

(2)連接,因為此時分別為的中點,

,所以均為直角三角形,

從而,所以即為直線與平面所成的角。

因為,所以即為所求;

(3)因,又,所以

,故三棱錐的表面積為

因為三棱錐的體積,

所以

法二:(1)因,故

,則。

所以,

當且僅當取等號。此時邊的中點。

故當的中點時,的長度最小,其值為;

(2)因,又,所以。

點到平面的距離為,

,故,解得

,故;

(3)同“法一”。

法三:(1)如圖,以為原點建立空間直角坐標系,設,則,

所以,當且僅當取等號。

此時邊的中點,邊的中點。

故當邊的中點時,的長度最小,其值為;

(2)設為面的法向量,因

。取,得。

又因,故

因此,從而,

所以;

(3)由題意可設為三棱錐的內切球球心,

,可得

與(2)同法可得平面的一個法向量,

,故,

解得。顯然,故。

20.解:(1)當時,。令,

故當,單調遞增;

,單調遞減。

所以函數(shù)的單調遞增區(qū)間為,

單調遞減區(qū)間為

(2)法一:因,故。

,

要使對滿足的一切成立,則,

解得

法二:,故。

可解得。

因為單調遞減,因此單調遞增,故。設

,因為,

所以,從而單調遞減,

。因此,即。

(3)因為,所以

對一切恒成立。

,令

。因為,所以

單調遞增,有。

因此,從而。

所以。

21.解:(1)設,則由題

,故。

又根據(jù)可得

,代入可得,

解得(舍負)。故的方程為;

(2)法一:設,代入

,

從而

因此。

法二:顯然點是拋物線的焦點,點是其準線上一點。

的中點,過分別作的垂線,垂足分別為,

。

因此以為直徑的圓與準線切(于點)。

重合,則。否則點外,因此

綜上知。

22.證明:(1)因,故

顯然,因此數(shù)列是以為首項,以2為公比的等比數(shù)列;

(2)由⑴知,解得;

(3)因為

所以。

(當且僅當時取等號),

。

綜上可得。(亦可用數(shù)學歸納法)

 


同步練習冊答案