解:原式. ···································· 當時.原式. 查看更多

 

題目列表(包括答案和解析)

已知:拋物線C1:y=-2x2+bx-6與拋物線C2關(guān)于原點對稱,拋物線C1與x軸分別交于A(1,0),B(m,0),頂點為M,拋物線C2與x軸分別交于C,D兩點(點C在點D的左側(cè)),頂點為N.
(1)求m的值;
(2)求拋物線C2的解析式;
(3)若拋物線C1與拋物線C2同時以每秒1個單位的速度沿x軸方向分別向左、向右運動,此時記A,B,C,D,M,N在某一時刻的新位置分別為A′,B′,C′,D′,M′,N′,當點A′與點D′重合時運動停止.在運動過程中,四邊形B′M′C′N′能否形成矩形?若能,求出此時運動時間t(秒)的值,若不能,說明理由.

查看答案和解析>>

已知:拋物線C1:y=-2x2+bx-6與拋物線C2關(guān)于原點對稱,拋物線C1與x軸分別交于A(1,0),B(m,0),頂點為M,拋物線C2與x軸分別交于C,D兩點(點C在點D的左側(cè)),頂點為N.
(1)求m的值;
(2)求拋物線C2的解析式;
(3)若拋物線C1與拋物線C2同時以每秒1個單位的速度沿x軸方向分別向左、向右運動,此時記A,B,C,D,M,N在某一時刻的新位置分別為A′,B′,C′,D′,M′,N′,當點A′與點D′重合時運動停止.在運動過程中,四邊形B′M′C′N′能否形成矩形?若能,求出此時運動時間t(秒)的值,若不能,說明理由.

查看答案和解析>>

已知:拋物線C1:y=-2x2+bx-6與拋物線C2關(guān)于原點對稱,拋物線C1與x軸分別交于A(1,0),B(m,0),頂點為M,拋物線C2與x軸分別交于C,D兩點(點C在點D的左側(cè)),頂點為N.
(1)求m的值;
(2)求拋物線C2的解析式;
(3)若拋物線C1與拋物線C2同時以每秒1個單位的速度沿x軸方向分別向左、向右運動,此時記A,B,C,D,M,N在某一時刻的新位置分別為A′,B′,C′,D′,M′,N′,當點A′與點D′重合時運動停止.在運動過程中,四邊形B′M′C′N′能否形成矩形?若能,求出此時運動時間t(秒)的值,若不能,說明理由.

查看答案和解析>>

在解不等式|x+1|>2時,我們可以采用下面的解答方法:
①當x+1≥0時,|x+1|=x+1.
∴由原不等式得x+1>2.∴可得不等式組數(shù)學公式
∴解得不等式組的解集為x>1.
②當x+1<0時,|x+1|=-(x+1).
∴由原不等式得-(x+1)>2.∴可得不等式組數(shù)學公式
∴解得不等式組的解集為x<-3.
綜上所述,原不等式的解集為x>1或x<-3.
請你仿照上述方法,嘗試解不等式|x-2|≤1.

查看答案和解析>>

   如圖,邊長為4的等邊三角形AOB的頂點O在坐標原點,點A在x軸正半軸上,點B在第一象限.一動點P沿x軸以每秒1個單位長的速度向點A勻速運動,當點P到達點A時停止運動,設(shè)點P運動的時間是t秒.將線段BP的中點繞點P按順時針方向旋轉(zhuǎn)60°得點C,點C隨點P的運動而運動,連接CP、CA,過點P作PD⊥OB于點D.

(1)填空:PD的長為               (用含t的代數(shù)式表示);

(2)求點C的坐標(用含t的代數(shù)式表示);

(3)在點P從O向A運動的過程中,△PCA能否成為直角三角形?若能,求t的值.若不能,請說明理由;

(4)填空:在點P從O向A運動的過程中,點C運動路線的長為                            

【解析】此題考核相似三角形的判定和性質(zhì),旋轉(zhuǎn)的性質(zhì)

 

查看答案和解析>>


同步練習冊答案