解:原式.當時.原式 查看更多

 

題目列表(包括答案和解析)

精英家教網如圖①,在梯形ABCD中,CD∥AB,∠ABC=90°,∠DAB=60°,AD=2,CD=4.另有一直角三角形EFG,∠EFG=90°,點G與點D重合,點E與點A重合,點F在AB上,讓△EFG的邊EF在AB上,點G在DC上,以每秒1個單位的速度沿著AB方向向右運動,如圖②,點F與點B重合時停止運動,設運動時間為t秒.
(1)在上述運動過程中,請分別寫出當四邊形FBCG為正方形和四邊形AEGD為平行四邊形時對應時刻t的值或范圍;
(2)以點A為原點,以AB所在直線為x軸,過點A垂直于AB的直線為y軸,建立如圖③所示的坐標系.求過A,D,C三點的拋物線的解析式;
(3)探究:延長EG交(2)中的拋物線于點Q,是否存在這樣的時刻t使得△ABQ的面積與梯形ABCD的面積相等?若存在,求出t的值;若不存在,請說明理由.

查看答案和解析>>

已知:拋物線C1:y=-2x2+bx-6與拋物線C2關于原點對稱,拋物線C1與x軸分別交于A(1,0),B(m,0),頂點為M,拋物線C2與x軸分別交于C,D兩點(點C在點D的左側),頂點為N.
(1)求m的值;
(2)求拋物線C2的解析式;
(3)若拋物線C1與拋物線C2同時以每秒1個單位的速度沿x軸方向分別向左、向右運動,此時記A,B,C,D,M,N在某一時刻的新位置分別為A′,B′,C′,D′,M′,N′,當點A′與點D′重合時運動停止.在運動過程中,四邊形B′M′C′N′能否形成矩形?若能,求出此時運動時間t(秒)的值,若不能,說明理由.

查看答案和解析>>

如圖①,在等腰直角三角板ABC中,斜邊BC為2個單位長度,現把這塊三角板在平面直角坐標系xOy中滑動,并使B、C兩點始終分別位于y軸、x軸的正半軸上,直角頂點A與原點O位于BC兩側.
(1)取BC中點D,問OD+DA是否發(fā)生改變,若會,說明理由;若不會,求出OD+DA;
(2)你認為OA的長度是否會發(fā)生變化?若變化,那么OA最長是多少?OA最長時四邊形OBAC是怎樣的四邊形?并說明理由;
(3)填空:當OA最長時A的坐標(
2
2
,
2
2
),直線OA的解析式
y=x
y=x

查看答案和解析>>

已知:拋物線C1:y=-2x2+bx-6與拋物線C2關于原點對稱,拋物線C1與x軸分別交于A(1,0),B(m,0),頂點為M,拋物線C2與x軸分別交于C,D兩點(點C在點D的左側),頂點為N.
(1)求m的值;
(2)求拋物線C2的解析式;
(3)若拋物線C1與拋物線C2同時以每秒1個單位的速度沿x軸方向分別向左、向右運動,此時記A,B,C,D,M,N在某一時刻的新位置分別為A′,B′,C′,D′,M′,N′,當點A′與點D′重合時運動停止.在運動過程中,四邊形B′M′C′N′能否形成矩形?若能,求出此時運動時間t(秒)的值,若不能,說明理由.

查看答案和解析>>

如圖①,在梯形ABCD中,CD∥AB,∠ABC=90°,∠DAB=60°,AD=2,CD=4.另有一直角三角形EFG,∠EFG=90°,點G與點D重合,點E與點A重合,點F在AB上,讓△EFG的邊EF在AB上,點G在DC上,以每秒1個單位的速度沿著AB方向向右運動,如圖②,點F與點B重合時停止運動,設運動時間為t秒.
(1)在上述運動過程中,請分別寫出當四邊形FBCG為正方形和四邊形AEGD為平行四邊形時對應時刻t的值或范圍;
(2)以點A為原點,以AB所在直線為x軸,過點A垂直于AB的直線為y軸,建立如圖③所示的坐標系.求過A,D,C三點的拋物線的解析式;
(3)探究:延長EG交(2)中的拋物線于點Q,是否存在這樣的時刻t使得△ABQ的面積與梯形ABCD的面積相等?若存在,求出t的值;若不存在,請說明理由.

查看答案和解析>>


同步練習冊答案