A已知數(shù)列{a
n}是首項(xiàng)為
a1=,公比q=
的等比數(shù)列,設(shè)
bn+2=3logan (n∈N*),數(shù)列{c
n}滿足c
n=a
n•b
n.
(1)求證:{b
n}是等差數(shù)列;
(2)求數(shù)列{c
n}的前n項(xiàng)和S
n;
(3)若
cn≤m2+m-1對一切正整數(shù)n恒成立,求實(shí)數(shù)m的取值范圍.
B已知數(shù)列{a
n}和{b
n}滿足:a
1=λ,
an+1=an+n-4,
bn=(-1)n(an-3n+21),其中λ為實(shí)數(shù),n為正整數(shù).
(Ⅰ)對任意實(shí)數(shù)λ,證明:數(shù)列{a
n}不是等比數(shù)列;
(Ⅱ)證明:當(dāng)λ≠-18時,數(shù)列{b
n}是等比數(shù)列;
(Ⅲ)設(shè)0<a<b(a,b為實(shí)常數(shù)),S
n為數(shù)列{b
n}的前n項(xiàng)和.是否存在實(shí)數(shù)λ,使得對任意正整數(shù)n,都有a<S
n<b?若存在,求λ的取值范圍;若不存在,說明理由.