14. 已知m.n為正整數(shù). (Ⅰ)用數(shù)學(xué)歸納法證明:當(dāng)x>-1時.(1+x)m≥1+mx, (Ⅱ)對于n≥6.已知.求證.m=1,1,2-.n, (Ⅲ)求出滿足等式3n+4m+-+(n+2)m=(n+3)n的所有正整數(shù)n. 解:(Ⅰ)證:當(dāng)x=0或m=1時.原不等式中等號顯然成立.下用數(shù)學(xué)歸納法證明: 當(dāng)x>-1.且x≠0時.m≥2,(1+x)m>1+mx. 1 (i)當(dāng)m=2時.左邊=1+2x+x2,右邊=1+2x.因為x≠0,所以x2>0.即左邊>右邊.不等式①成立, (ii)假設(shè)當(dāng)m=k(k≥2)時.不等式①成立.即(1+x)k>1+kx,則當(dāng)m=k+1時.因為x>-1,所以1+x>0.又因為x≠0,k≥2,所以kx2>0. 于是在不等式(1+x)k>1+kx兩邊同乘以1+x得 (1+x)k·(1+x)>(1+kx)(1+x)=1+(k+1)x+kx2>1+(k+1)x, 所以(1+x)k+1>1+(k+1)x,即當(dāng)m=k+1時.不等式①也成立. 綜上所述.所證不等式成立. (Ⅱ)證:當(dāng) 而由(Ⅰ). (Ⅲ)解:假設(shè)存在正整數(shù)成立. 即有()+=1. ② 又由(Ⅱ)可得 ()+ +與②式矛盾. 故當(dāng)n≥6時.不存在滿足該等式的正整數(shù)n. 故只需要討論n=1,2,3,4,5的情形, 當(dāng)n=1時.3≠4.等式不成立, 當(dāng)n=2時.32+42=52.等式成立, 當(dāng)n=3時.33+43+53=63.等式成立, 當(dāng)n=4時.34+44+54+64為偶數(shù).而74為奇數(shù).故34+44+54+64≠74,等式不成立, 當(dāng)n=5時.同n=4的情形可分析出.等式不成立. 綜上.所求的n只有n=2,3. 15.不等式的解集是 A. B. C. D. 16.設(shè)集合... (1)的取值范圍是 , (2)若.且的最大值為9.則的值是 . (1)(2) 查看更多

 

題目列表(包括答案和解析)

 (2012年高考湖北卷理科21)(本小題滿分13分)

設(shè)A是單位圓x2+y2=1上的任意一點,i是過點A與x軸垂直的直線,D是直線i與x軸的交點,點M在直線l上,且滿足丨DM丨=m丨DA丨(m>0,且m≠1)。當(dāng)點A在圓上運動時,記點M的軌跡為曲線C。

(I)求曲線C的方程,判斷曲線C為何種圓錐曲線,并求焦點坐標(biāo);

(Ⅱ)過原點且斜率為k的直線交曲線C于P、Q兩點,其中P在第一象限,它在y軸上的射影為點N,直線QN交曲線C于另一點H,是否存在m,使得對任意的k>0,都有PQ⊥PH?若存在,求m的值;若不存在,請說明理由。

查看答案和解析>>


同步練習(xí)冊答案