(Ⅱ)求到平面的距離, 查看更多

 

題目列表(包括答案和解析)









(1)求點(diǎn)到平面的距離;
(2)求與平面所成角的大小。

查看答案和解析>>

精英家教網(wǎng)在平面直角坐標(biāo)系中,橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0),圓O:x2+y2=a2,且過(guò)點(diǎn)A(
a2
c
,0)所作圓的兩條切線互相垂直.
(Ⅰ)求橢圓離心率;
(Ⅱ)若直線y=2
3
與圓交于D、E;與橢圓交于M、N,且DE=2MN,求橢圓的方程;
(Ⅲ)設(shè)點(diǎn)T(0,3)在橢圓內(nèi)部,若橢圓C上的點(diǎn)到點(diǎn)P的最遠(yuǎn)距離不大于5
2
,求橢圓C的短軸長(zhǎng)的取值范圍.

查看答案和解析>>

在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(0,-1),B點(diǎn)在直線y=-3上,M點(diǎn)滿足
MB
OA
MA
AB
=
MB
BA
,M點(diǎn)的軌跡為曲線C.
(Ⅰ)求C的方程;
(Ⅱ)P為C上的動(dòng)點(diǎn),l為C在P點(diǎn)處的切線,求O點(diǎn)到l距離的最小值.

查看答案和解析>>

在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為
x=2cos
y=2sin?-2
(?為參數(shù)),在以O(shè)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,C2的極坐標(biāo)方程為ρcos(θ-
π
4
)=
2
,(余弦展開為+號(hào),改題還是答案?)
(1)求曲線C1的極坐標(biāo)方程及C2的直角坐標(biāo)方程;
(2)點(diǎn)P為C1上任意一點(diǎn),求P到C2距離的取值范圍.

查看答案和解析>>

在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),已知點(diǎn),,

若點(diǎn)C滿足,點(diǎn)C的軌跡與拋物線交于A、B兩點(diǎn).

(I)求證:;

(II)在軸正半軸上是否存在一定點(diǎn),使得過(guò)點(diǎn)P的任意一條拋物線的弦的長(zhǎng)度是原點(diǎn)到該弦中點(diǎn)距離的2倍,若存在,求出m的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>


同步練習(xí)冊(cè)答案