在不大于1的正有理數(shù)中任取100個數(shù).在這個問題中.總體.個體.樣本.樣本容量各指什么? 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)已知關(guān)于x的二次函數(shù)f(x)=x2+ax-b(a,b∈R).
(Ⅰ)當(dāng)b=-2時,由于對任意的x∈R,函數(shù)f(x)的值總大于零,求實(shí)數(shù)a的取值范圍;
(Ⅱ)如果方程f(x)=0有一個負(fù)根和一個不大于1的正根,求實(shí)數(shù)a,b滿足的條件,并在右圖所給坐標(biāo)系中畫出點(diǎn)(a,b)所在的平面區(qū)域;
(Ⅲ)在第(Ⅱ)問的條件下,若實(shí)數(shù)k滿足b=k(a+1)+3,求k的取值范圍.

查看答案和解析>>

已知A1(x1,y1),A2(x2,y2),…,An(xn,yn)是直線l:y=kx+b上的n個不同的點(diǎn)(n∈N*,k、b均為非零常數(shù)),其中數(shù)列{xn}為等差數(shù)列.
(1)求證:數(shù)列{yn}是等差數(shù)列;
(2)若點(diǎn)P是直線l上一點(diǎn),且
OP
=a1
OA1
+a2
OA2
,求證:a1+a2=1;
(3)設(shè)a1+a2+…+an=1,且當(dāng)i+j=n+1時,恒有ai=aj(i和j都是不大于n的正整數(shù),且i≠j).試探索:在直線l上是否存在這樣的點(diǎn)P,使得
OP
=a1
OA1
+a2
OA2
+…+an
OAn
成立?請說明你的理由.

查看答案和解析>>

某遠(yuǎn)洋捕漁船到遠(yuǎn)海捕魚,由于遠(yuǎn)海漁業(yè)資源豐富,每撒一次網(wǎng)都有w萬元的收益;同時,又由于遠(yuǎn)海風(fēng)云未測,每撒一次網(wǎng)存在遭遇沉船事故的可能,其概率為(常數(shù)k為大于1的正整數(shù)).假定,捕魚船噸位很大,可以裝下n次撒網(wǎng)所捕的魚,而在每次撒網(wǎng)時,發(fā)生不發(fā)生沉船事故與前一次撒網(wǎng)無關(guān),若發(fā)生沉船事故,則原來所獲的收益將隨船的沉沒而不存在,又已知船長計(jì)劃在此處撒網(wǎng)n次.

(1)當(dāng)n=3時,求捕魚收益的期望值;

(2)試求n的值,使這次遠(yuǎn)洋捕魚收益的期望值達(dá)到最大.

查看答案和解析>>

已知A1(x1,y1),A2(x2,y2),…,An(xn,yn)是直線l:y=kx+b上的n個不同的點(diǎn)(n∈N*,k、b均為非零常數(shù)),其中數(shù)列{xn}為等差數(shù)列.
(1)求證:數(shù)列{yn}是等差數(shù)列;
(2)若點(diǎn)P是直線l上一點(diǎn),且,求證:a1+a2=1;
(3)設(shè)a1+a2+…+an=1,且當(dāng)i+j=n+1時,恒有ai=aj(i和j都是不大于n的正整數(shù),且i≠j).試探索:在直線l上是否存在這樣的點(diǎn)P,使得成立?請說明你的理由.

查看答案和解析>>

必須用黑色字跡鋼筆或簽字筆作答,答案必須寫在答題卷各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答的答案無效。

第Ⅰ卷   選擇題(共50分)

一、選擇題(本大題共10小題,每小題5分,滿分50分)

1、設(shè)全集U={是不大于9的正整數(shù)},{1,2,3 },{3,4,5,6}則圖中陰影部分所表示的集合為(  )

       A.{1,2,3,4,5,6}    B. {7,8,9}

       C.{7,8}                        D.    {1,2,4,5,6,7,8,9}

2、計(jì)算復(fù)數(shù)(1-i)2等于(  )

A.0                B.2              C. 4i                   D. -4i

查看答案和解析>>


同步練習(xí)冊答案